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PREFACE

TN Gauss's Dioptrische Untersuchungen there is little trouble with

sign conventions, and continued fractions are not employed.

These are, however, prominent features in more recent presentations

of the first-order theory of the optical instrument, and render the

subject somewhat difficult to the beginner.

It is the aim of the present Tract to eliminate all unnecessary

difficulties and to give a quite elementary account of the theory ; and,

to this end, it has seemed desirable to follow (in Sections I IV) the

general lines of Gauss's memoir. I am indebted to a suggestion of

Mr T. J. I'A. Bromwich for a feature of the present scheme which

seems to me to mark a great advance in simplification, namely the

postponing of the study of the functional form of the constants of the

instrument till after its general optical properties have been established,

and the employing of an elementary theorem in algebraic linear trans-

formations to obtain the fundamental equations and the relation

between the constants.

Limits of space have prevented any close examination of the

application of the theory to particular instruments, but one or two

questions in connection with the equivalent thin lens and the adjust-

ment of field-glasses, not usually treated in text-books, have been

discussed ;
and a few pages have been devoted to bringing reflecting

instruments within the scope of the theory.

In Section IX a brief and, I hope, easy account is given of the

third-order aberrations.
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I am deeply indebted to Mr Bromwich for reading the manuscript,

for his assistance in drawing up the syllabus which constitutes

Section X, and for other most valuable suggestions. My thanks are

due to Mr W. M. Page, Fellow of King's College, for reading the

proofs, and to Mr S. D. Chalmers, of the Northampton Institute, for

giving me the benefit of his knowledge of technical optics.

J. G. L.

ST JOHN'S COLLEGE,

1 May 1908.
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THE ELEMENTAEY THEORY OF THE
SYMMETRICAL OPTICAL * INSTRUMENT.

I. APPROXIMATE FORMULAE FOR A SUCCESSION OF
REFRACTIONS AT NEARLY NORMAL INCIDENCE.

1. Analytical formulae expressing the laws of refraction.

These laws are : (i) The incident ray, the refracted ray, and the

normal to the refracting surface at the point of incidence are in one

plane, (ii) The ratio of the sines of the angles of incidence and

refraction is a constant, depending only on the nature of the media

in which the light is propagated.

It is important to express these laws in terms of the direction

cosines of the lines involved. Let /x be the index of refraction of the

medium in which is the incident ray, // the index of the medium in

which is the refracted ray; let the cosines of the incident ray be

(/, m, n), those of the refracted ray (/', m', n'\ those of the normal

to the refracting surface at the point of incidence, drawn towards

the medium /x', (L, M, N) ;
let the angles of incidence and refraction

be < and <' respectively.

In the diagram AO is the incident ray, OC the refracted ray, and

OK the normal. On the incident ray produced a point B is taken so

that OB is /A units of length, and on the refracted ray a point C is

taken so that OC is // units of length. BJ, OK are perpendiculars

drawn to the normal. Then the angles BOJ, COK are </>,
<' respec-

tively, and the lengths of JB and KG are /* sin < units and i*! sin <f>'

units respectively.

The first law tells us that JB and KG are in the same plane

through JK, and therefore parallel to one another. The second law

tells us that JB and KG are of the same length. The two laws are

expressed in the statement that JB and KG have equal projections on

L. 1



LAWS OF REFRACTION [I

each of the coordinate axes. Now the projection of JB is the excess

of the projection of OB over that of OJ; and OB is of length p. and

has 'cosines'
1

$ to/ w},
1 white *.0.T is of length /xcos< and has cosines

(L, M, N). Likewise the projection of KG is the difference of the

projections of OC and OK. So the equalities of the projections of

JB and KG on the three axes of coordinates are expressed by

equations of the type

fjil-fjLCOs<j)L
=

fji'l' ft' cos $ L.

Rearranging, we get the following equations to express the laws of

refraction :

pl'-nl = (X cos <' -
//.
cos <) L \

p'm -fJLm = (p cos<j>' -pcos<f>)M
j-

............... (1).

p'ri ILU= (ft cos </>'
-

/A cos <)N }

The three equations are not all independent, as is readily seen by

multiplying them by L, M, N respectively and adding, it being

remembered that ^Ll' = cos<', and

2. Approximate formulae for nearly normal incidence.

When the incident ray is very nearly normal, it is readily seen

that the refracted ray is also very nearly normal. It is therefore

possible so to choose the axis of z that it shall be nearly parallel to the

incident ray, the refracted ray, and the normal at the point of in-

cidence. When the axis of z has been so chosen, /, m, I', m, L, M,
are all small. We shall obtain approximate formulae on the hypothesis
that these quantities are so small that their squares and products may
be neglected ;

this is equivalent to the supposition that aberration is

to be neglected.

On this hypothesis n, which is equal to

differs from unity by small quantities of the second order; so also
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ri and N. Hence we may replace all three by unity. Also < and <'

are small of the same order as /, etc. ; so cos <f>, cos <f>' differ from unity

by small quantities of the second order, and may be replaced by unity.
Thus the third of equations (1) becomes, on the basis of the

proposed approximation, an identity; and the other two take the

forms

=
(n

f

-fji)M )"

3. Expression of L, M in terms of the coordinates of

the point of incidence.

The most usual application of the formulae (2) is to the case in

which a pencil of rays pass nearly normally through a comparatively
small portion of the refracting surface, so that the rays and the

normals at all the points of incidence are very nearly parallel to one

another. It is then advantageous to take as axis of z the normal at

some one of the points of incidence, say at a point so centrally

situated that it may be called the centre of the portion of the surface

through which refraction takes place ;
the ray incident at this point

may be called the central ray of the pencil ;
it need not be more

precisely defined.

Unless the point at which the axis of z is normal, say (0, 0, c), is

a singular point on the refracting surface, the part of the surface in

the neighbourhood of this point can be approximately represented by
an equation of the type

2 (z-c) + az* + 2hxy + by
2 = .................. (3),

the approximation neglecting terms of the third order in x and y.

The constants a, h, b are of course known when the shape of the

surface is known.

At the point (#, y, z) the cosines of the normal are approximately

(ax + hy\(hx + by\ 1,

when the squares and products of #, y are neglected. The first two of

these may be substituted for Z, M in the formulae (2), and so we get

the refraction of the ray incident at (x, y, z) determined by the

equations

^
' - pm = (X - //.) (hx + by) )

It is, of course, possible to choose the coordinate planes of x and y

12



4 SERIES OF REFRACTING SURFACES [l

so that the h of formula (3) shall be zero. If this were done the

approximate equation of the surface would take the form

2(z - c^~+^-=0 ..................... (5),
Pi P2

and PI, p 2 would be the principal radii of curvature of the surface at

the point (0, 0, c), reckoned positive when the corresponding con-

vexities of the surface are towards the medium /A'. The formulae

which would then take the place of (4) are

P]
(6).

P2

4. A series of refracting surfaces having a common
normal.

When a ray traverses a succession of different media arranged in

such a way that the refracting surfaces have a common normal with

which the ray is always nearly coincident, it is interesting to see how
the equations of the previous Article enable us to derive from a know-

ledge of the position of the ray before its first incidence a complete

specification of the ray after its final emergence.
The incident ray (say in a medium /x ) is known when we know its

cosines 1
,
m

,
and the coordinates (a-1} ylt z^ of the point where it

meets the first surface,

2 (z
-

Ci) + a^ + ^xy + b1f = 0.

Clearly ^ differs from ca only by quantities of the second order, so we

may replace Zi by cl5 and regard the incident ray as specified by the

four quantities /
, m<>, #1, y\.

After the first refraction (into a medium ^ the cosines of the ray
are changed to lly m l , given by the equations

Equations of this type, which determine the change of direction due to

refraction, may be called
"
optical

"
equations.

The coordinates (#2 , y2 ,
c2) of the point where the refracted ray

meets the second refracting surface

2 (z c2)
+ aza? + 2/i2ay + b2 y

2 =
0,

can be obtained by putting z = c2 (a sufficient approximation) in the
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equations of the ray, i.e. of the line which proceeds from (xlt ylt cx) in

the direction (h, mlt 1). Now the equations of this line are

(x
-
#0/4 = (y- yO/wij

= z-clt

and so x.2 , y*. are determined by the equations

Equations of this type, which determine the coordinates of a point

of refraction in terms of those of the previous point of refraction, may
be called

"
geometrical

"
equations.

Having found #2 , 3/2 by the geometrical equations, we are in a

position to use the optical equations corresponding to the next

refraction, viz.

equations which we could not use till we knew #2 > 3/2?
but which now

give us the values of 4 ^2-

Eliminating llt ml from the six equations we are left with four

equations which give us explicit formulae for #2 , 3/2, 4, ^2 in terms of

/oi Wo* #1, yi ;
that is, the quantities specifying the ray in the medium

to in terms of the quantities that specify the incident ray.

Thus the problem of refraction is solved for the case of two

surfaces. If there are n surfaces and n + I media, we get in a similar

manner 2n optical equations and 2n - 2 geometrical equations. From

these we can eliminate successively the 4w - 6 quantities

/!, ml ,
Z2 , #2, 4, ^2, #3) 3/3, #_!, 3/tt-l, 4-1, Wn _!,

and obtain finally four equations expressing xn , yn ,
ln ,
mn ,

the quan-

tities specifying the emergent ray, in terms of 1
,
m

,
xlt ylt the

quantities that specify the incident ray*.

5. Case in which all the refracting surfaces are sym-
metrical about the same two planes through the axis.

By suitable choice of the planes of x and y it is always possible to

make the coefficient of xy in the equation of one of the refracting

surfaces vanish ; but in general this choice would leave the corre-

sponding coefficients for all the other surfaces different from zero. But

if the surfaces are such that their indicatrices at the points where they
are met by the common normal (the axis of z) all have their principal

*
Cf. Prof. R. A. Sampson on Gauss's Dioptrische Untersuchungen, Proc.

London Math. Soc. xxxix. 1898, p. 33.



6 EQUATIONS FOR GENERAL INSTRUMENT [l

axes in the same two directions, then the same choice of coordinate

planes will make all the ^'s vanish simultaneously.

In this case the equations of the preceding Article are greatly

simplified, for when all the A's are zero, the equations divide them-

selves into two sets, one set involving only #'s and /'s, the other set

involving only #'s and m's. To solve the problem of n surfaces we now

have only to eliminate the 2n - 3 quantities l^ #2 , ts---#n-i 4-i> from

the n optical and the n 1 geometrical equations of the first set. The

result, with suitable change of symbols, serves also for the corresponding

equations of the second set
;
so that in this particular case the labour

of elimination is much less than half that required in the general case.

6. Form of the results in the general case.

Taking the #'s, ys, /'s, m's in the order which presents itself

naturally as one follows the course of a ray, we see that each of

these quantities is a homogeneous linear function of those that precede

it. Consequently when the elimination has been performed we get

%n, yn > ln> mn as homogeneous linear functions of /, mQ , x^, y^. A
more useful result is arrived at if we specify the positions of the

entering and the emergent rays, not by the coordinates (a?,, ^),

(#n, yn) of the points where they meet the planes z = cl9 z = cn ,
but

by the coordinates ( , ^ )> (, */) of the points where they respectively

meet twe other arbitrarily selected planes z = cl -p, z = cn + q, which

we call planes of reference. This implies the introduction of four

more geometrical equations, namely two of the type

and two of the type = xn + ql,

and the addition of x, y^ xn , yn to the quantities to be eliminated.

If we denote by a's with double suffix the coefficients in the

expressions for /, m, xn , yn in terms of xlt ylt 1
, m^, so that, for

example, l = an a?i + alzy} +^3/0 + ^4^0, it is readily verified that the

suggested elimination leads to

+ (a4S +pa4l + qa<% +pqa2l) 1 + (au +pa& + qa^+ pqa22) m
and two others which we may regard as contained in these two, since

they may be derived by differentiating with respect to q and remem-

bering that

tt
j
^= L = m.

dq (Jq
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Thus the whole theory of the set of n surfaces is contained (to

the degree of approximation postulated at the outset) in two linear

equations involving a rather large array of constants*.

7. Optical interpretation of the equations for the general
case.

Without going into detail, it may be useful to indicate how these

equations may be interpreted optically, in other words to shew how

they give us information as to the image formed by the rays of light

that proceeded originally from a given bright point. We regard

(o> i/o i Cip) as the coordinates of the bright point, and suppose a

white screen to be placed in the plane z = cn + q. If we fix attention

on the ray which sets out from the source in a given direction,

specified by given values of / and m
,
the equations tell us the co-

ordinates of the point in which the ray after refraction strikes the

screen. If the pencil of refracted rays form a point image, it must

be possible, namely by placing the screen where it will receive the

image, to make all the refracted rays strike the screen in the same

point ;
in fact, it must be possible to give such a value to q that and

?) shall be independent of / and m . This means that the giving of a

suitable value to q makes four coefficients vanish. Though these four

conditions are not all independent, they are in general equivalent to

three independent conditions, and so cannot be simultaneously satisfied

except in special cases.

Failing to obtain a point image, we next try to find the positions

of the focal lines of the pencil of emergent rays. For the points in

which the rays strike the screen to lie in a straight line, the necessary

and sufficient condition is that there should be a linear relation

between and ^ with coefficients independent of 4 and m . This

is the case if the same value of A makes the coefficients both of / and

of mQ vanish in the expression for + Ar/. The condition is therefore

the vanishing of

There are two values of q which satisfy this condition, and these

define the positions of the two focal lines of the emergent pencil.

*
Amongst the 16 constants there are 6 relations, which are the conditions for

the existence of a Characteristic Function. For the form of the relations see

Sampson, I.e. pp. 38, 39
;
for the connexion with the Characteristic Function see

Bromwich, Proc. London Math. Soc. xxxl. 1899, p. 8.
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II

8. Case of two planes of symmetry.

When the surfaces are as described in Article 5, the mathematical

solution of the refraction problem is much simpler. The equations

reduce to

n) /n) / ) ,^
.22)m )

and the optical interpretation is easier than in the general case.

II. THE MATHEMATICAL SOLUTION OF THE REFRACTION
PROBLEM FOR A SYMMETRICAL INSTRUMENT.

9. The symmetrical optical instrument.

We proceed now to the detailed discussion of a very particular case

of the general arrangement discussed in Article 4, namely the case in

which all the refracting surfaces are symmetrical with respect, not

merely to two planes, but to every plane through the axis of z. The

refracting surfaces are then necessarily surfaces of revolution having

the axis of z as common axis of revolution
; they are generally spheres,

but are sufficiently well represented by approximate equations of the

type

2(z-c-)+^^- = (10).

Such an arrangement is called a symmetrical optical instrument, and

is the kind of instrument most frequently employed in every-day life.

The approximate theory here developed applies to any symmetrical

instrument which is used in such a way that the rays which it trans-

mits are very nearly parallel to the axis, for example the telescope

and opera-glass ;
it is practically useless in the case of wide-angle

instruments such as the microscope or portrait-camera.

10. Power of a single spherical refracting surface.

When refraction takes place from a medium of index /x to a

medium of index /*' through a surface represented approximately

by equation (10), the optical equations are equations (6) of Article 3,

simplified by the equality of both px and p2 to p. They are, in fact,

.(11).

pm [j-m
=
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Thus it appears that, to the approximation contemplated, the optical

properties of the spherical refracting surface are all contained in the

single constant

~-
(12).

This constant is called the "diverging power" or simply the
"
power"

of the surface, and is usually denoted by K.

It is most important that the definition of the power of a surface

should be understood precisely, without confusion on account of the

conventions of sign which are implicitly involved in the above formula.

These conventions are ultimately two, namely (i) that the light passes

from the medium //.
into the medium //, and (ii) that p is positive

when the convexity of the refracting surface is towards the second

medium.

Suppose the direction of the ray of light to be reversed. Then /*'

becomes the index of the first medium, and
//,

that of the second, so

that
fj* p must take the place of // /x in formula (12); but con-

vexity towards the medium // is concavity towards the medium /A,

which is now the second medium, so that the case required by
definition is that in which p is negative, and p must take the

place of p in the denominator. Thus the power of the surface for

a ray going from // to
//.

is

-p
'

that is, the same as before. Thus it appears that the power of a

surface is not altered by reversing the ray, and its definition has

nothing to do with the sense in which the ray passes.

The second of the conventions is thus the only one that affects the

definition of the power, and its bearing on the definition is clearly

summed up in the following rule :

The power of a refracting surface is to be regarded as positive

when the medium on the convex side o/ the surface has a greater

refractive index than tJie medium on the concave side; the power is

negative when the medium of greater index is on the concave side.

This is only another way of saying that K is positive if // > n and

P > 0, or if p <
//-
and p < 0.

For a plane refracting surface p is infinite, and K is zero.

The optical equations for a surface of power K are

nm =
Ky (13).
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11. Reduced projected inclinations of a ray.

The equations of the ray in the medium /x being of the form

x -a y ft

7- - - =*-%
/ m

it follows that the equation of the projection of the ray on the plane of

xz is of the form
x- a. = l(z-y}.

Hence / is the tangent of the angle that this projection of the ray

makes with the axis of z, or, to our degree of approximation, the angle

itself. In fact / and m are the inclinations to the axis of z of the

projections of the ray on the coordinate planes through that axis. We
call / and m the

"
projected inclinations

"
of the ray.

Putting 1*1
=

8, pm = ,
we may call S and e the

" reduced projected

inclinations" of the ray, the word "reduced" in this connexion

meaning that the projected inclinations are multiplied by the index

of the medium in which the ray is passing.

In terms of this notation, the optical equations for a single surface

take the form
V-B = KX,

f -* = Ky... (14).

12. Divergence produced by a refracting surface.

If the effect of refraction were an increase in the projected inclina-

tions of each ray, a pencil of rays would, after passing through the

surface, be more divergent or less convergent than before ; the surface

would literally produce divergence. But it is to be noticed that the

optical equations give information, not as to the changes produced by
the refraction in the projected inclinations, but as to the changes

produced in the reduced projected inclinations
;
and the power of the

surface measures the degree to which, for a given point of incidence,

it is capable of increasing the reduced projected inclinations. It is

therefore convenient to abandon the literal meaning of the word
"
divergence," and to apply the term to what is really quite different,

namely increase of the reduced projected inclinations. With this

understanding, a diverging surface is one whose power is positive, a

converging surface is one whose power is negative. A plane surface

produces neither convergence nor divergence.

In the case of an instrument consisting of several surfaces, if the

first and last media are the same there is no difference between the

literal and the special meanings of divergence. Thus a double convex
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lens is a converging instrument, a double concave lens is a diverging

instrument.

A thin double concave lens of glass, whose two surfaces have the

same curvature, produces divergence ;
and as this results from the

successive refractions at two refracting surfaces of equal power, it

may be assumed that each surface separately produces divergence.

In fact a surface with air on the concave side and glass on the convex

side is a diverging surface or surface of positive power. This fact,

which is easy to remember, helps one also to remember the rule given

in Article 10, that a surface has positive power when the medium of

greater index is on the convex side.

13. Reduced distances.

When reduced projected inclinations are substituted for projected

inclinations in the geometrical equations, of the type of equations (7)

(the equations of a ray in medium of index y^), the forms assumed are

y-2
=

These will be simplified if we introduce new symbols to represent

fe
~

Ci)//*i and similar expressions which occur in other geometrical

equations. Now c2
- ct is a distance measured along the axis of the

instrument
;

if we define 0,1 by the relation

/ \ I / + f\
(.c2

cl)/fil
= ai v L ;>

we may call x the corresponding "reduced distance." Reduced

distance means distance parallel to the axis or along the ray, divided

by the index of the medium in which the ray is passing. In other

parts of Optics the phrase
" reduced distance

"
is used in a different

sense, so care must be taken not to extend the use of the definition

here given beyond its present application.

With the notation of (15) the geometrical equations take the

forms

x2
=

\ + ct>i$i )
> (lo).

#2
=

*/l +1 1 J

14. Refraction at a single spherical surface.

Let the power of the surface be *, let the first medium have index

fjL,
the second index /w/. Let it be agreed to specify the incident ray by
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means of its reduced projected inclinations 8, e, and by the coordinates

&, y, of the point where it meets a certain plane of reference ; and let

the emergent ray be defined by its reduced projected inclinations 8', e',

and the coordinates #', y', of the point where it meets a second plane

of reference. The planes of reference are perpendicular to the axis
;

the first is at a reduced distance u in front of the refracting surface,

the second is at a reduced distance u' behind the refracting surface.

The corresponding true distances are accordingly pu and pu. The

reduced distance u is to be measured positively from the surface into

the first medium, while u' is to be measured positively from the

surface into the second medium. This kind of convention will be

adhered to throughout. Later on we shall associate u with the

position of an object, u (or a corresponding symbol) with the position

of the image, and it is convenient to remember that u is positive for

a real object, and u' positive for a real image.

If the coordinates of the point of incidence be
, ^ we have three

pairs of equations at our disposal. The first are the geometrical

equations for the incident ray, typified by
= x + u$.

The second are the optical equations for the refraction, typified by

The third are the geometrical equations for the refracted ray,

typified by
of = + u'%. ^

Eliminating from these we get two equations, namely,

8'=*tf + (+l)8 \

X' = (KU + 1) X + (KUU' + U +
u') & j

'

which express 8' and x in terms of x and 8, that is, the quantities

specifying the refracted ray in terms of those specifying the incident

ray. The corresponding equations expressing e' and / in terms of

y and need not be written down, for it is clear that they are of

the same form and involve precisely the same constants. The four

* The order in which the symbols #, 3, 5', x' appear in these equations and in

many later ones may, at first, be thought rather unnatural, but it has been

deliberately chosen as representing in a sense the historic or chronological order.

In the case of the initial ray we know first the point from which it sets out, and
second the direction in which it goes ; hence x, y precede 5, e. In the case of the

emergent ray we learn first (from the optical equations) its direction, and afterwards

(from the geometrical equations) the coordinates of its point of arrival
;
hence 5', e'

precede *', y'.



14, 15] THEOREM ON LINEAR SUBSTITUTIONS 13

equations constitute a complete solution of the refraction problem for

a single spherical surface.

The form of equations (17) must be carefully noted. They are of

the type
8' = ax +

where a, b, c, d are constants depending partly on the power of the

surface, and partly on the positions of the planes of reference. And

further, since

(KU +1) (KU' + 1)
- K (KUU' + U +

*')
= 1,

the constants of (18) are subject to the condition

bc-ad=l .......................... (19).

It will be shewn that the theory of any symmetrical optical instru-

ment, no matter of how many surfaces it is composed, is contained in

equations of the same type as (18), with the relation (19) between the

constants.

15. Algebraical lemma on linear substitutions.

Let two variables, 19 ^ be homogeneous linear functions of two

other variables 2 , <fes, determined by the relations

and let 0*, <
2 be similar functions of another pair of variables 3 ,

namely

From these equations it follows, by the elimination of 2 and < 2 ,
that

0! and fa are expressible as homogeneous linear functions of 3 , </>3 ,

namely

where, in fact,

p"=pp' + qr
f

, q"=pq +qs',

r" - rp + sr, s" = rq' + ss
f

.

Now it is clear from these formulae that p", q", r", s" are the elements,

formed by the ordinary rule for multiplying determinants, of the

determinant which is the product of

p, q

r, s
and p, r

q, s'
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and therefore

P i

r",

p, q P
r, s

That is to say, Ol and ^ are homogeneous linear functions of 3 and <
3>

and the determinant formed by the coefficients of these functions is

equal to the product of the determinants formed respectively by the

coefficients of the expressions for Olt ^ in terms of #2 , $25 and the

expressions for 2 > <t>2 in terms of 3 ,
< 3 .

The theorem is true equally for three sets of n variables, whatever

integral value n may have
;

but for our purpose the case of n = 2

is sufficient*.

If now we consider not merely three, but any number of sets of two

variables, the sets being taken in a definite order, and those of each set

being homogeneous linear functions of those of the set next in order,

we find by repeated application of the theorem just proved that the

variables of the first set can be expressed as homogeneous linear

functions of those of the last set, and that the determinant of the

corresponding coefficients is the product of all the determinants of

the coefficients of the relations between intermediate pairs of con-

secutive sets.

16. Symmetrical instrument consisting of any number
n of refracting surfaces.

In the case of an instrument consisting of any number of refracting

surfaces, let the indices of the first and last media be /^ and
//.

re-

spectively, and let the powers of the surfaces be K
lt K2 ,...*. Let the

entering ray be specified by its reduced projected inclinations 8 o>

and by the coordinates #05 3/o
of the point where it strikes a plane of

reference at reduced distance u in front of the first surface of the

instrument. Let the emerging ray be specified by similar quantities

8, e, a?, y, and a plane of reference at reduced distance v behind the last

surface. Let the ray in any intermediate medium (/^.) be specified

by 8r , e,,, #r , yr ,
and a plane of reference chosen anywhere in the

medium.

Then, by Article 14, it is seen that the S's and #'s of consecutive

* The theorem is a particular case of a well known theorem concerning

Jacobians, namely that if 6 and are functions of u and v, and if u and v

are functions of x and y, then

6 (0, 0) _ d (6, 0) 9 (u, v)

d (x, y)~ d (u, v) d (x, y)
'
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rays are connected by equations of the same type as (18), subject to a

condition of the type of (19). In fact

subject to GU di _
&i, bi

So also #2 G^XI + d2$i }

and
1.

And there is a whole series of such relations, ending with expressions

for x, 8, in terms of xn- lt 8n_!.

Hence, by the lemma of Article 15, it appears that there are

relations, got by eliminating x^ 81, ... #-i, 8n-i, of the form

where the determinant of the coefficients C', D', A', B' equals the

product of n determinants each of which is unity, and therefore is

itself unity; in fact,

B'C'-A'D' = l ........................ (21).

These coefficients A', B', C', D' must of course depend on the

values of u and v
; they are not therefore constants depending merely

on the nature of the instrument, but are constants for the instrument

so long as we keep to the same first and last planes of reference.

It is obvious that the relations between the entering and emerging

rays must be quite independent of the particular method which we

adopted of specifying the intermediate rays within the instrument,

and therefore the constants do not depend on the particular choice

of the intermediate planes of reference.

Of course y and e are expressible in terms of yQ and e by equations

involving the same four constants.

17. Dependence of A', B', C", D' on. u and v.

In order to interpret optically the equations (20), it is necessary to

ascertain in what way the constants depend on u and v. With this

in view we introduce a new set of constants, A, B, C, D, which are the

values that A', B', C', D', respectively, would have if u and v were both

zero. These are genuinely constants of the instrument, and correspond
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to planes of reference taken close up to the first and last refracting

surfaces respectively. They are, of course, subject to the relation

BC-AD=l ........................... (22).

If
, ty) and

, y are the coordinates of the points where the ray

meets the first and last surfaces of the instrument respectively, these

coordinates must take the place of #
> # >

x
-> V in equations (20) when

these surfaces and the corresponding planes of reference coincide. So

we have the relations

,
3
,

The geometrical equations of the entering and emerging rays give

relations between # and
>
and between and #, namely

(24).X _

The elimination of and between (23) and (24) leads to

= AxQ + (Au + B) 8

I ^^
These must be identical with (20), and so we have the relations

...(26).

D' = Auv + v + Cu + D
The equations (25) are the most useful form of the equations of the

instrument. The second alone involves the whole theory and may be

called the fundamental equation. The first is really contained in the

second, for it may be derived from it by differentiation with respect to

vt it being seen from the geometrical equation that

It appears therefore that the whole of the theory of the instrument,

when aberration is neglected, depends on four "constants of the

instrument," which are equivalent to only three independent constants

on account of the relation (22).

The constant A is called the "power" of the instrument.
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III. THE OPTICAL PROPERTIES OF A SYMMETRICAL
INSTRUMENT.

18. Conjugate focal planes.

In proceeding to deduce from equations (25) some of the optical

properties of the instrument, it is advantageous to think of the point

(#01 #o) in the first plane of reference as the seat of a point source of light,

and to regard the last plane of reference as occupied by a white screen.

The fundamental equation shews that the value of x in general

depends on that of 8
,
so that rays setting out from the luminous point

in different directions and passing through the instrument will strike

the screen in different points. Thus there is a bright patch on the

screen, but not an image. It is, however, possible, when the position

of the bright point is prescribed, to choose such a value of v, and

therefore such a position of the screen, that x shall be independent of

S
;
this is effected by choosing v so that the coefficient of 8 in the

fundamental equation vanishes. The coefficient of e in the expression

for y, being the same coefficient, vanishes for the same choice of v.

And so the point in which the ray meets the screen is the same

whatever be the direction in which it originally set out. Thus all the

rays come together to form a point image at the point (a?, y) in the

final plane of reference.

The relation between the reduced distances u, v, of the bright

point and its image, from the ends of the instrument is

Auv + Sv+Cu + D = ..................... (28).

The value of v thus defined does not depend on XQ or y ,
but only on

u, and so a number of bright points having the same u give images

having the same v. Consequently a small plane object placed on the

axis in the plane defined by u has a plane image at the position defined

by v. The relation between object and image is, in a sense, a reciprocal

one, since light, proceeding from an object in the plane v and traversing

the instrument in the reverse direction, would form an image in the

plane u,

Planes which correspond to one another in this fashion are called
"
conjugate focal planes."

When A is not zero, the relation between conjugate focal planes

may be put in another form if we multiply (28) through by A, and

make use of (22). We get

= A*w + ABv + ACu + BC- 1,

whence (Au + B)(Av+C) = l ..................... (29).

L.
O
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19. Conjugate foci.

A bright point and its image point are called "conjugate foci."

The expression of the coordinates of the image point in terms of

those of the object point to which it is conjugate is contained in the

equations
#o tyo Ou + D

x =
Au + S' '-A***' V =~A^S

which are immediate consequences of (25) and (28). Here u and v are

coordinates, for origins in the first and second planes of reference

respectively, in the special case in which /x and /x are both unity ;
in

the more general case u and v are z coordinates divided respectively

by /MO and /*.

20. Linear Magnification.

The ratio of the linear dimensions of the image to those of the

object is called the "linear magnification," and may be denoted by m.

We may measure the object from the point on the axis to some other

point (# , y ) ;
and then, when v has been adjusted so as to satisfy (28),

the image is measured from that point of its plane which is on the

axis, to the point (x, y). So far as regards dimensions parallel to the

axis of x, the linear magnification is the ratio of x to x
,
and this is

given by the second of equations (25). So we have

m = Av+C ........................... (31).

Combining this with (29) we get

= Au + B ........................... (32).m
These are the two magnification formulae

;
the symmetry of the

instrument about the axis ensures that these formulae, proved in

the first instance only for dimensions parallel to the axis of x, shall be

true for dimensions in all directions perpendicular to the axis of the

instrument.

A negative value of m indicates inversion of the image as com-

pared with the object.

* The correspondence between a point (x', y', z'), referred to one set of axes,

and a point (#, y, z), referred possibly to another set of axes, which is deter-

mined by the relations

px + qy + rz + s

is called a homographic correspondence. It is a one-to-one correspondence in

which straight lines correspond to straight lines. Clearly the correspondence
between conjugate foci is of this type.
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Since m is the same for dimensions in all directions, the image is

of the same shape as the object ; for example the image of a circular

object is circular. If we had precise image formation with an asym-
metrical instrument, the kind referred to in Article 8, the linear

magnification would be different for different directions and the image
would be of a different shape from the object, i.e. distorted

;
a circular

object, for example, would have an elliptic image.

21. Unit Planes or Principal Planes.

It is possible so to choose u and v that the linear magnification

shall be unity. Denoting the special values by u and vlt we obtain,

by putting m \ in (31) and (32), the relations

l=Avl + C, l = Au1 + (33).

The conjugate focal planes defined by u and Vi are called the "planes
of unit magnification," or more briefly "unit planes" or "principal

planes." The points where these planes meet the axis are called the

"unit points" of the instrument. The characteristic property of the

unit planes may be expressed by the statement that the (#, y) co-

ordinates of the point where any entering ray crosses the first unit

plane are the same as those of the point where the corresponding

emergent ray crosses the second unit plane.

22. Principal Focal Planes.

If in the relation (28) we put u GO
,
the corresponding value, F,

of v is given by
AV+C=0 (34);

if we put v = so
,
the corresponding value U of u is given by

AU+B =
(35).

The planes specified by U and V are called the "principal focal

planes
"

of the instrument, and their intersections with the axis are

called the
"
principal foci." The second principal focal plane, that

given by F, is the place where a screen should be placed in order to

receive the image of an infinitely distant object ;
in other words it is

the locus of the points of concurrence of emergent rays corresponding

to incident pencils of parallel rays. The first principal focal plane,

that given by [7, is such that if a point source of light be placed at

any point of it (near the axis), the rays from it will, after traversing

the instrument, emerge as a parallel beam. If the direction of passage

through the instrument were reversed, the rdles of these two planes

would be interchanged.

22
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23. Focal Lengths.

The distances of the principal focal planes beyond the corre-

sponding unit planes are called the "focal lengths" of the instrument.

The word "beyond" is used to indicate that distances are to be

measured from the respective ends of the instrument, away from the

instrument
; i.e., opposite to the direction of the light for the end at

which incidence takes place, and in the same direction as the light at

the end where the light emerges.

The reduced distances of the principal focal planes beyond the

corresponding unit planes are respectively

UU-L and YVI,
each of which equals

- 1 /A. The actual distances, or focal lengths,

are therefore F^ F2 ,
where

F! = -IJ^A and Fs = -n/A (36).

These lengths are negative if the instrument has a positive power,

and vice versa. They are equal if the first and last media have the

same index; and in the particular case of /x
=

l, /*
=

!, which is

practically true for an instrument in air, the focal length is

F=-l/A (37).

24. Relation between the distances of conjugate foci

from the principal focal planes.

When distances are measured from the principal focal planes

instead of from the ends of the instrument the magnification for-

mulae and the condition for conjugacy assume specially simple forms.

Let u U=p, v- V=qt
so that p, q are the reduced distances of the

planes of reference beyond the principal focal planes. Substituting

U+p, V+q, for u
y v, in formulae (2.6), and remembering (34) and

(35), we obtain

so that the standard formulae (20) assume the form

(38).

From these it appears that the condition that x should be inde-

pendent of 8
,
that is, the relation between conjugate focal planes, is

or pq = (l/AY ........................... (39).
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The associated magnification formulae are

^
= Ap, m = Aq ........................ (40).

These formulae are, of course, equivalent to

where p', q are the true distances corresponding to p, q. In this form

they can be strikingly illustrated by a diagram in which the axes of

the instrument, the unit planes, and the principal foci, Slt B2 ,
are first

drawn. From a point P of the object two rays are drawn, the first

parallel to the axis and meeting the first unit plane in X, the second

through BI meeting the first unit plane in Y. The corresponding

emergent rays are a ray which leaves the second unit plane at X' and

passes through S2j and a ray which leaves the second unit plane at Y'
and proceeds parallel to the axis

;
the point Q of intersection of these

two marks the position of the image of P. The lines XX' and YY'
are parallel to the axis, in virtue of the property of unit planes. All

the lengths named in (41) are easily identified in the diagram, and the

formulae are seen to be the expressions of very simple geometrical

relations.

25. Nodal Points.

If an incident ray cuts the axis of the instrument at the point

whose reduced distance from the first refracting surface is ^J, then for

.this ray # =
0, and the first of equations (25) becomes

8 = (4ti + )8 .

Now if u have the value u given by the relation

Au 2 + = n/n ........................... (42),

we have S//x,
= 8

//u, ,

so that the projected inclinations of the entering and the emergent

rays are equal. The emergent ray must pass through the image point

of the point on the axis determined by u z , namely a point on the axis

at reduced distance v 2 beyond the end of the instrument from which

rays emerge, v 2 being given by

Av*+C=pJiL ........................... (43).

These two conjugate points on the axis are called the "nodal

points
"

of the instrument. They have the property that if an enter-

ing ray passes through the first nodal point the emergent ray passes

through the second nodal point and is parallel to the entering ray.
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If H = P O ,
it is seen by comparison of the formulae (33), (42), and

(43) that U! = u 2 and v 1
= v 2 . In other words, if the first and last

media have the same index the nodal points are the points where the

unit planes cut the axis.

Suppose the instrument to be directed towards a very distant

bright point, and the image caught on a properly placed screen. If

now the instrument be rotated about a point on its axis through a

small angle, the image will still be (very approximately) on the screen,

but not in general at the same point of the screen. One ray suffices

to determine the position of the image, and we shall take that ray to

be the ray through the nodal points. The object being very distant

the direction of the entering ray is not altered by the rotation of the

instrument, and so the direction of the ray that emerges and passes

through the second nodal point is unaltered. Thus the image is

shifted on the screen by an amount equal to the distance moved

through by the second nodal point on account of the rotation of the

instrument. If the point about which the rotation takes place is the

second nodal point itself, that point does not move, and so the image
does not move on the screen. This fact is taken advantage of in

practice, to determine experimentally the nodal points of an optical

instrument. The image is studied through a microscope while the

instrument to be tested is turned successively about different points

on the axis ; when a point has been found such that a small rotation

about it does not move the image it is known to be the nodal point.

26. Equivalent Single Refracting Surface.

The equations (26) shew how the constants, A', B', C', D', depend
on the positions of the planes of reference. If we take the unit planes

as planes of reference we must substitute the values of HI and Vi for

u and v in these equations, and the corresponding constants are

A' = A, B'=l, C' = l, D' = Q ............ (44);

so the equations (20) assume the form

Let us compare these with the corresponding equations for a single

refracting surface of power K, when the planes of reference both coin-

cide with the surface itself. The coincidence of the planes of reference

ensures the equality # = #
,
and we have already seen (Article 11,

eqn. 14), that

8 = r + 8 ........................... (46).
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Thus it is seen that, if K = A
t
the equations for the single surface are

identical with those of the instrument
; and, if the initial and final

media have respectively the same indices in the two cases, the inter-

pretations of corresponding symbols are identical. To a given entering

ray, therefore, there correspond in the two cases emergent rays having
the same direction and proceeding from points having the same (a?, y)
coordinates. The only difference is in the z coordinates of the points

of departure from the second unit planes ; these necessarily differ by
the distance from the first to the second unit plane of the original

instrument. So, for a given object at a given distance from the first

unit plane, the single refracting surface of power A produces an

image which differs only in position from the image produced by the

instrument
;

the positions differ by a displacement parallel to the

axis, of amount equal to the distance between the unit planes.

This single surface is called the "equivalent single refracting sur-

face
"

of the instrument. When the object is in a prescribed position

relative to the instrument, the equivalent surface must be regarded as

situated at the first unit plane ;
but when the relative position of the

object is not prescribed, so that a translation of object or of image

presents no difficulty, one may think of the space between the unit

planes as abolished and the equivalent surface as being in both.

27. Apparent distance of the image.

"When the values of u and v, in the formulae (25), are not such

as correspond to conjugate focal planes, the coefficient of 8 in the

expression for x does not vanish. It has, however, a simple inter-

pretation if we regard u as marking the position of the object, and v

as corresponding to the point on the axis occupied by the eye of the

observer.

An observer estimates the distance of an object at which he is

looking, by the use of both eyes. If he is compelled to use only one

eye, he loses the power of estimating distance from mere observation,

but can usually combine the result of observation with a previous know-

ledge of the approximate size of the object, and so calculate its distance.

What the one eye can perceive is the angular size of the cone of rays

by which the object is seen, and what is calculated is the distance

at which a normal section of this cone should be made if it is to be of

the known linear dimensions of the object.

In viewing an object through a monocular instrument, there is

usually no previous knowledge of the size of the image. It is natural
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therefore to attribute to the image the known size of the object,

though its actual size may be very different. Thus there arises the

idea of the
"
apparent distance

"
of the image, as distinguished from

its true distance. The apparent distance of the image is the distance

from the eye to that normal section of the cone of rays from image to

eye whose linear dimensions are the same as those of the object.

Measuring the object from the axis of the instrument, its linear

size is what has been called #. The angle that the corresponding

image subtends at the eye, placed on the axis at v, is 8//x. There

is, however, no necessity to take account of sign, since the apparent

distance must be positive, i.e. a distance measured forwards from the

eye. Change in the sign of 8 simply means inversion of the image.

The apparent distance is d, where

xJd = -*ltL ............. .............. (47).

Since the eye is on the axis, x = 0, and hence, by formulae (25)

= (Av+C)xi + (Aw + Bv + Cu + D) 8
;

the elimination of 8 gives

a? = - (Auv + Bv+Cu + D) 8,

whence d =
i*. (Auv + Bv + Cu + D) .................. (48),

the equality having reference to arithmetical rather than algebraical

values.

When
/x.
=

/x ,
i.e. when object and eye are in the same medium, the

apparent distance is not altered if the positions of object and eye be

interchanged.

28. Longitudinal Magnification.

The linear magnification in has reference only to the dimensions of

object and image in directions perpendicular to the axes of the instru-

ment. The longitudinal magnification, which we may denote by M, is

the ratio of the dimensions of image and object in the direction of the

axis, the object being no longer regarded as flat.

Let u, ur

be the least and greatest reduced distances of points of

the object from the instrument, and v, v the corresponding reduced

distances for the image ;
and let m, m be the corresponding values of

the linear magnification. Clearly the longitudinal dimensions of object

and image are /u (u'
-
u) and /x (v

-
v), so that M= ft (v

-
v)/^ (u

r-
u}.

Now Av'+C=--l Av+C=
A

l

Au + B Au + B'
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whence v'-v = - (u
r

-u)/(Au' + B) (A u + B} ;

therefore J/= - ^/[^o (Au + B}(Au + 5)] = - O//AO) M' ...... (49).

When the longitudinal dimensions of the object are small we may
assume m' = m as a good approximation, and so we get

M=-(n/f
jL )m* ........................ (50).

Hence, if the object is a curved surface cutting the axis normally,

so also is the image; and the radii of curvature p , p, of their sections

by any axial plane are in the same sense and are connected by the

relation /x p =
/xp.

29. Helmholtz's formula.

The Helmholtz magnification formula expresses the linear magnifi-

cation in terms of the inclinations of the ray which passes through the

points where object and image meet the axis. If 8
,
8 refer to this ray,

we have, by putting # = in the first of the standard formulae,

or ?wS = 8 .............................. (51).

This is the form assumed by Helmholtz's formula when expressed in

terms of the notations of the present tract, to the degree of approxi-

mation postulated at the outset.

30. Other formulae.

The reduced distances u, v of the fundamental formulae, instead of

being measured from the first and last surfaces of the instrument, may
be measured from any other fixed planes of reference. Let us measure

them from the pair of conjugate planes defined by u
,
v0t for which the

linear magnification is m
,
so that m ~ l = Au + B, and m = Av + C.

We effect the change by substituting u + u and v + v for u and v

respectively in (26). We thus get

A' = A, B' = Au + m ~ l

,
C' = Av + rn

,
D' =Auv + jn

~ l v + moU.

Hence the relation between conjugate focal planes, D' = 0, takes the form

........................... (52),v

while the magnification formulae become

m~l = Au + mQ

~ l

,
m = Av + m ............... (53),

from which follows Maxwell's formula (equivalent to formula 49),

v/u = - mm 9 ........................... (54).

This group of formulae includes those usually given for direct

refraction at a single spherical surface. If u, v are measured from the

surface itself, m = l. If u, v are measured from the centre of the

sphere (the point of coincidence of the nodal points), WO
=
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IV. THE MANNER IN WHICH THE OPTICAL PROPERTIES OF
AN INSTRUMENT DEPEND ON ITS CONSTITUTION.

31. Dependence of the values of the constants on the

composition of the instrument.

With a view to determining the manner in which the constants of

an instrument depend upon its structure, let us examine the effect of

modifying the instrument already considered by adding to it another

refracting surface. At the place marked by v = a let us place a

refracting surface of power K', beyond which shall lie a new medium of

index //, and let us evaluate the constants A lt BI, Ci, DI, of the

modified instrument.

Let #', y be the coordinates of the point where the ray crosses the

surface K', and let S', e', be the reduced projected inclinations of the

emergent ray. In the equations (25) let us put u = 0, v = 0, so that #

marks the point where the ray crosses the first refracting surface, and

x the point where it crosses the last refracting surface of the un-

modified instrument. Thus

(
,

In terms of these, x' is expressed by the geometrical equation

x' - x + a'S,

and 8' by the optical equation

rwi+-^v.

Eliminating x and S, we get

(
,

'

These equations correspond, in the case of the modified instrument, to

the equations (55) for the unmodified instrument, and hence the con-

stants for the modified instrument are given by

_,

These forms shew explicitly in what manner the constants depend on

the power K of the last refracting surface, and on the reduced distance
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a of the last surface from the last but one. The first of these relations

as it stands, and the derived relations

are important.

The power A of an instrument, regarded not as a constant but

rather as a function of the powers, KI} *2 ,
... KW ,

and the mutual reduced

distances, al} a2 ,
... an- lt of the component refracting surfaces, maybe

called K, with a suffix to indicate the number of surfaces in the

instrument. Then in the case of an instrument of n surfaces the

relations (58) become
'

Now suppose the ray to go through the instrument in the reverse

direction, the axis of z being likewise reversed. The change leaves x

unaltered, but converts a positive reduced projected inclination into

a negative one. Solving equations (55), and remembering that the

determinant of the constants is unity, we get

50)>

where now (8) and ( 8 ) are reduced projected inclinations of the

reversed ray. These equations shew that for the reversed rays the

A and D constants play the same part as before, but the roles of

B and Care interchanged. The last refracting surface is now *
15 and

so we have further equations of the same type as (59), namely

of which the latter is equivalent to

Thus when the functional form of Kn or A is known, the forms of the

other constants can be immediately deduced.

The first of equations (57) gives us a method of finding the

function Kn . For, in the new notation, this equation becomes

............ (63),

a formula for Kn in terms ofKn-i .

From formulae (14) it is clear that, for a single surface of power KI}

*! = *! .............................. (64).
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Now put n = 2 iii (63), and we find that for an instrument con-

sisting of two surfaces (xlt an *2)

Kz
=

*i + 2 (K! a x + 1 )
=

K! + *2 + j KJ K2 ............ (65).

Similarly

= Kj + K2 +

and the process may be continued to any stage by repeated application

of the general formula.

Another rule for writing down Kn may be got from the equations

(57). For it is clear from these equations that

on comparison of these with the formulae of simple continued fractions

it is readily seen that in the case of the fraction

1+ .................. (68),

the convergents corresponding to the partial quotients an-^ and Kn are

respectively Dn/Cn and Bn/A n . This is a convenient form in which to

remember the law of formation of Kn ; but the student must not

suppose that familiarity with the theory of continued fractions is at all

necessary to the understanding of the theory of the optical instrument.

32. Thick and thin lenses.

The simplest instrument made up of two refracting surfaces is the

lens. If KJ, K2 ,
be the powers of the surfaces, and a the reduced

distance between them, the constants of the instrument are

A =K
1 + K2 + a/c1

K2 ,
B = l+a^ C=I+aK1 ,

D = a... (69).

Thus ul
= -aK2 /(Kl + K2 + aKl

K2 )^ v1
= aK l /(

and the distance between the unit planes is

Or [(/*!- /*) *i + (/*i
-

/*o) K2 + Mi*i K2]/ [K! + K2 + a^Kj ...... (70).

For a lens of glass, of thickness t, situated in air, we put /*
=

/*
= 1.

If the radii of curvature of the faces be pi and p2) positive when the

faces are concave, K1
=

(/x1 -l)/p1 , Ka= 0*i i)/p, and a = t/fr. If t is

so small that the squares of (/ft and #/p2 may be neglected, the distance
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between the unit planes is sufficiently well represented by the ex-

pression t (l \ which is - 1 if we assume for glass the rough value

3= -
. The power is accurately

PlP2

In ordinary simple cases the positions of the unit planes are easily

specified. Thus if the lens is plano-concave one unit point is in the

curved surface, and the other distant from it by a third of the thickness.

If Pi
=

pz, the unit points are approximately the points of trisection of

the thickness.

A thin lens is a lens for which t is so small in comparison with

pl and p2 that a^ and *c2 may be neglected. For such a lens

A = K1 +K.2 ,
and i^, u2 ,

and the distance between the unit planes all

vanish*. The unit planes being coincident, the lens may be replaced

by the equivalent single refracting surface, without any shifting of

either object or image, and the equivalence is not qualified but com-

plete. Of course, if the first and last media are the same, air for

example, a single refracting surface between air and air is not a

practical possibility; but what is meant by the equivalent single

surface in this case is that rays passing through the thin lens undergo

precisely the same deviations as are indicated by the mathematical

formulae for a single surface of power /c
x + *2 in the position occupied

by the lens. We have in fact

8' 8 = (*! + K2) #,

which becomes identical with (14) if * = ^ + *2 .

33. Instrument made up of thin lenses.

An instrument made up of n thin lenses is, of course, an instru-

ment of 2n refracting surfaces, and is a case of the theory already

discussed. But we have seen that the pair of refracting surfaces

which make up any thin lens can be replaced by a completely

equivalent single refracting surface. >Thus the mathematical treat-

ment which applies most simply to this case is one which takes account

* Another expression for the power of a thin lens may be noted in passing,

namely

where t' is the thickness at the rim of the lens, and r the radius of the circular

rim.
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of only n refracting surfaces, whose powers and mutual distances are

the powers and mutual distances of the corresponding lenses. In fact

the whole discussion of Articles 16 32 may be reinterpreted as applying

to an instrument made up of n thin lenses, each /c being now the

power of a lens instead of the power of a single surface. The expres-

sion for Kn as a function of the powers of the lenses is the same as we

have already obtained in the case of single surfaces ;
and we may talk

of the
"
equivalent single thin lens

"
of the instrument instead of the

"
equivalent single refracting surface

"
;
the former being in fact a

physical possibility in the particular case in which the latter is not,

namely the case when /*
= /v If, as usually happens, all the lenses are

situated in air, for which ft=l, the distinction between true and

reduced distances disappears.

In particular it may be noticed that the mathematical formulae for

a thick lens have precisely the same form as the formulae for an

instrument made up of two thin lenses.

34. Instrument of zero power.
An instrument for which the constant A is zero is called a

"telescope." Clearly its principal focal planes, unit planes, and

nodal points are all infinitely distant, and the instrument has pro-

perties quite distinct from those of an instrument whose power is not

zero.

To obtain these properties, we put A = in the standard formulae

(22) and (25), the result being

=l
= ^80 ............... (72).

From the last equation it is seen that x is independent of 8

provided
v+Cu +D = ........................ (73),

which is therefore the condition of conjugacy of the planes determined

by u and v. This relation is simpler than the general relation

Auv + &v + Cu + D = 0,

for while the general relation is the most general homographic relation

between u and v, the particular relation is a special kind of homo-

graphic relation, namely similitude. The general relation implies

equality of anharmonic ratios in the case of four us and the corre-

sponding v's; the particular relation implies equality of ordinar
ratios of division in the case of three u's and the corresponding v'a.
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Assuming u and v to correspond to conjugate focal planes, we get
from the third of equations (72) the magnification formula

-I-* (74),

which, in virtue of the first equation, is equivalent to

(75).^ '

Thus it appears that the linear magnification is the same, at whatever

distance along the axis the object be placed.

From equation (73) it is seen that if u = oc
, then also v = cc . The

principal focal planes are thus both at infinity. In other words, to an

entering pencil of parallel rays there corresponds an emergent pencil

of parallel rays. The relation between the directions of these pencils

is determined by the second of equations (72). Suppose two objects,

whose distances are (for practical purposes) infinite, to be in the field

of view of the instrument, for example two stars, one on the axis and

the other near the axis. If is the angle which these two stars

would subtend at the eye of an observer, i.e. the angular distance

between them, is the angle between the beams of light from them
which enter the instrument

;
thus # = 3 //* . The corresponding beams of

light which emerge from the instrument and enter the eye are inclined

to one another at an angle 0, equal to S//K, and this is the angular
distance between the images of the stars. The ratio of to is the

angular magnification (n) produced by the instrument ; it is given by
the formula

..'ft;* 'ft* ......... ..... .......... (76) .

#0 /* *>0 f*

If, as is usually the case, n = f*o, we get the still simpler formula

n =B=- ........................... (77).m
Thus the angular magnification is the inverse of the linear magnifica-

tion, and is independent of the angular positions of the objects viewed,

provided only they be near enough to the direction of the axis of the

telescope to justify the use of the approximation which we have

adopted throughout.

An ordinary astronomical telescope in ideal adjustment consists of

an object-glass and an eye-piece placed at such a distance apart that

ihe power of the combined instrument is zero. The linear magnifica-

tion produced by the telescope being independent of the position of
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the object, we may think of an object consisting of a bright disc of the

same size as the object-glass, placed close up to the latter. The image
of this formed by the object-glass only (regarded as a thin lens) is an

equal bright disc, close up to the object-glass on the inside. The final

image, formed by the eye-piece, is thus the same as the image of the

object-glass formed by the eye-piece i.e. what is called the eye-ring.

So the linear magnification is the ratio of the diameter of the eye-ring

to the diameter of the object-glass, and the angular magnifying power
is the inverse of this ratio.

Another formula for the magnifying power is got by applying

formula (40) to the eye-piece only, so that the constants are the

constants of the eye-piece. If / is the focal length of the eye-piece,

and F that of the object-glass, we put A= I//; and we notice that

in ideal adjustment eye-piece and object-glass have a common principal

focal plane, so that for the object-glass or any object coincident with it

p = F. The formula then yields

/'
Here m, a particular linear magnification for the eye-piece alone, is the

general linear magnification for the whole instrument. So the angular

magnifying power is

1 F
n=-=--. ........................... (78).m f

35. Plane refracting surface.

A plane refracting surface has zero power, and therefore has the

properties of a telescope. It is exceptional in this respect that, since

its linear magnifying power is unity, its unit planes are not necessarily

at infinity they are indeterminate
; any pair of conjugate planes are

unit planes.

It is worth while to notice that if one of the refracting surfaces of

an instrument be plane, it need not be reckoned as one of the n sur-

faces in the general formulae, provided care be taken to estimate

properly the reduced distance, through it, between the refracting

surfaces adjacent to it on either side. Thus, if we consider an

instrument made up of two hemispheres of glass (radius r, index /*),

with their plane faces towards each other at a distance c apart, we

have really an instrument of four refracting surfaces. But we may
treat it as one having only two refracting surfaces (*15 $15 *2) provided we

put K1
= K2 =(l-/x)/r, !

=
///* + c + ///*. If the curved faces of the
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hemispheres were towards each other at a distance c apart, we should

put Ki
= K2

=
(l fO/ r 0i = c, and measure u, v, as reduced distances

out through the glass from the curved surfaces
;
for example if the

object were at a distance p from the first plane refracting surface, we
should have u=p + r/p ;

and if the object were a virtual object (i.e. a

real image which the entering rays would have formed if they had not

been intercepted by the glass) p would be negative, but the same

formula for u would be employed.

36. Field-glasses and telescopes.

Telescopes, field-glasses and opera-glasses are so constructed that

the distance between the objective and the eye-piece can be adjusted
to suit the eye of the observer. Probably these instruments, when
in use, are seldom ideally telescopic, i.e. of zero power. It might,

however, be thought that, since the adjustment to suit the average eye
is a fairly small relative displacement of the lenses, the instruments in

use are at least approximately telescopic, or of very large focal length.

But this assumption requires examination, the more so as it is

meaningless to call a length very large unless one can specify some

standard length in comparison with which the largeness is estimated.

The linear magnification of an instrument in air, for an object at

a distance u, is given by

l/m Au +
t

and it is to be noticed that the right-hand side of this equality

consists of two terms, one constant, the other involving u. If the

instrument were telescopic the term containing u would be absent.

And therefore, as regards linear magnification, it may be said that the

instrument is nearly telescopic if the term in l/m which involves u is

small compared with the constant term, i.e. if AufB is small so that

the linear magnification is approximately independent of u. If, for

example, the instrument be a Galileo's telescope, the focal lengths of

objective and eye-glass being .Fand -/, and the distance between the

lenses F-f-b,

A=b/Ff, B = (F-b)lft
and Au/B = bu/F(F-b') = bulF'

approximately. We should call the instrument nearly telescopic if

bu/F
z were small, or (in other words) if the distance between the

principal foci of the lenses were small compared with the distance of

the image formed by the object-glass from the second principal focus,

of the object-glass.

L. 3
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Measurements, rather rough because no proper optical bench was

available, were made by the author on a pair of field-glasses of the

ordinary type. The values obtained were F=l '3 inches, /= 1'4

inches, and when the instrument was at the greatest length per-

mitted by the manner in which it was mounted the distance between

the lenses was 5 '9 inches, so that b was zero and the adjustment

ideally telescopic. Distant objects could be seen clearly with the

instrument so adjusted, but the clearness was increased by bringing

the lenses nearer together and was best when the instrument had been

shortened by about '2 inch. With this value of b, bu/F
2 = u/2Q6,

when u is measured by inches. As one does not use field-glasses to

view an object whose distance is small compared with 22 ft., the

instrument cannot be regarded as nearly telescopic, as regards its

linear magnification, when put to its ordinary use.

The linear magnification, however, is not so important as the

angular magnification, i.e. the ratio of the angles subtended at the

eye by image and object. When the length of the instrument is

denoted by /, and the distance of the eye from the eye-glass is

negligible, the angular magnification is the ratio of xjv to xj(l + u),

that is m(l + ii)/v ;
it is easily verified that this is equal to

{l+la-
l

}/{C+Du~
1

}
..................... (79).

For the two-lens instrument which we have been discussing, this

formula becomes

and if we assume that the length of the instrument is small compared
with u, we see that approximately

angular magnification = F/(f+ b) ............ (80).

In ideal adjustment this takes the value F/f; thus the change from

ideal adjustment alters the angular magnification in the ratiof/(f+ b).

If /= 1'4 in., b = '2 in., as in the case mentioned above, this ratio

is 7/8 ;
thus the change of angular magnification is not great, and

the instrument is in this respect not very different from an ideal

telescope.

In practice the value of b depends partly on the distance of the

object and partly on the particular distance between eye and image to

which the eye of the observer most readily accommodates itself. The

value of b is f*(-v-f)-
l

-F*(u-F)-\ If the eye prefers a near

image, so that -
v, though greater than f, is not very great, b is positive

and A is positive. But if the eye prefers a very distant image,
- v may

be much greater than u, so that b and A are negative. The mounting
of the lenses usually permits both positive and negative values of b.
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37. Combination of two instruments.

When two instruments whose constants are known are placed end

to end, so that light traverses first one and then the other, the con-

stants of the resulting compound instrument can be calculated easily

if each of the original instruments be supposed replaced by its

equivalent single surface (or single thin lens). In the resultant two-

surface instrument the distance between the single surfaces must be

taken equal to the distance between the second unit plane of the first

instrument and the first unit plane of the second. The object must,

however, be regarded as having the same position relative to the single

surface replacing the first instrument as it actually has relatively to

the first unit plane of the first instrument.

A knowledge of the constants of an instrument is equivalent to

knowledge of its power and of the positions of its unit planes. Taking
the unit planes of an instrument of power AC as planes of reference, the

constants for those planes are K, 1, 1, 0. If we have two instruments

of powers K
X and ** whose adjacent unit planes are at reduced distance

a apart, we see, by substituting the equivalent single surfaces, that

the constants of the combined instrument are /c1 + *2 + 0*1*2, l + a*2 ,

!+!, #, the planes of reference to which these constants refer being

the first unit plane of the first instrument, and the second unit plane

of the second instrument, since these planes correspond to the first

and last refracting surfaces of the equivalent two-surface system.

It is worth noting that the constants for a combination of two

instruments, which we may suppose to be situated in air, assume

simple forms if expressed in terms of the focal lengths flt /2 of the

instruments, and the distance b between their adjacent principal foci.

The planes of reference being the first principal focal plane of the

first instrument, and the second principal focal plane of the second

instrument, we readily obtain :

A=A'=- 7 ,
=-, C" =-, D' =

...(81).
/1/2 J\ J\

For a combination of three instruments the corresponding results

are

n, is xco\

-f-f, =-f-f, IJ =- -T-... (82).
/2/3 /1/2 /2

32
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V. THE EQUIVALENT THIN LENS.

38. Advantages of a compound instrument.

In connexion with the fact that any symmetrical optical instrument

in air may, so far as the first order approximation is concerned, be

replaced by an equivalent single thin lens, there naturally presents

itself the question what advantage has the relatively complex
instrument over the equivalent single lens ?

The most obvious answer to this question is that, by adjustment of

the curvatures of the faces of the lenses that make up the instrument,

it is possible to diminish greatly the aberrations of rays that are

inclined to the axis, and so to increase the angular field which is

represented after refraction by a clear image. Aberration is an effect

depending on the small quantities of the second or higher orders which

have been neglected throughout the present discussion. The effect of

diminishing aberration is to extend the values of the small inclinations

for which the formulae we have obtained may be regarded as approxi-

mately representing the actual facts.

But, if we agree to pay no attention to second order small

quantities, we may still ask whether the single thin lens is really as

effective as the instrument it replaces. The first telescopes were

not corrected for aberration, and there must be some more elementary
reason why they were constructed of two lenses when a single lens

might have sufficed.

For a telescope in ideal adjustment there is, of course, no

equivalent thin lens. For the power is zero, and the unit planes
are at infinity. To give such relative translation to the object and

image systems as shall bring these unit planes into coincidence, and

then to use a lens of zero power, is a proceeding which can hardly be

regarded as practicable. But the Galileo telescope, or opera-glass, as

frequently used, is not a telescope in ideal adjustment, and might
therefore be expected to have an equivalent thin lens capable of being
used in its stead.

The magnification formula l/m = Ap, where p is the distance of

the object beyond the first principal focal plane, shews that, when
an instrument is used for viewing objects beyond the first principal

focus, the linear magnification cannot be positive and so the image
cannot be upright unless the power of the instrument is positive. So,

when the opera-glass is used in this way, the power is positive and the

equivalent thin lens is a diverging one. Now if we view an object
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AB through a diverging lens, and if A'B' be the image, and the

centre or unit-point of the lens, OA'A and OB'B are straight lines,

and the image (if upright) is on the same side of the lens as the object,

namely on the side remote from the eye ;
if the object is distant, the

image is nearer to the eye than the object.

The eye E is necessarily outside the triangle AOB, and conse-

quently the image A'B' subtends at the eye a smaller angle than

the object AB ;
thus there is no angular magnification, but rather

angular diminution, and the lens is not serving any useful end. If

only E could be on the same side of the lens as AB, the angle A'EB'
would be greater than the angle AEB, and angular magnification
would be attained

;
but it is impossible to use a lens if the eye is

on the same side of it as the object.

Now let us consider a Galileo's telescope in which the object-glass

is converging and of focal length F, the eye-glass diverging and of

focal length f, and the distance between the lenses F-fb. Using
the standard formulae for two thin lenses, we put KI

= I IF, KZ
=

I//*,

a = F-f- b
;
whence

A=Kl + Kz + a,Kl
K2
= b/Ff) | (

.

B=l+aKt
= (F-b)/f, C=l+aKl

= (f+V/F)"
In order that the power of the instrument may be positive, b must

be positive, i.e. the lenses are nearer together than in the ideal adjust-

ment. The distance of the second unit plane from the eye-end of the

instrument is(l-C)/A orf (F-f -ft) /b, which is positive, and usually

large compared with /. Now the eye is placed quite close to the eye-

glass, and therefore the unit plane is behind the eye. The eye is in

front of the unit plane for the eye-end of the instrument, and yet the

instrument is between the eye and the object, so that it can be used

for viewing the object. Now the eye and the image system occupy
the same position relatively to the equivalent thin lens as if that lens



38 BADEN POWELL'S UNILENS [v, vi

were in the second unit plane, and so the use made of the instrument

corresponds to the use of the single lens when the eye is between the

lens and the object, under which circumstances there is a genuine

angular magnification. The difference between the two cases is that

for such a position of the eye the rays do not traverse the single lens

before reaching the eye, but do traverse the telescope ; the single lens

is as useless as if it were absent, the telescope gives the image mag-
nified as required. Or, to put the matter briefly, angular magnification

can only be obtained by putting the eye between the single lens and

the object ; the telescope gives us the advantage of having the eye in

front of the lens, without the corresponding disadvantage of having
the lens in such a position that the light on its way to the eye does

not traverse the lens at all.

If the opera-glass is used with such an adjustment that the image
is more distant than the object, the circumstances are different. In

this case b and A are negative, so that the equivalent lens is con-

verging and would yield angular magnification to an eye placed behind

it. The single lens would, in fact, be used like a reading-glass or a

simple microscope. If d, D denote the distances of lens and object

from the eye, and < the focal length, < + d>D, and the angular mag-
nification n is given by n~ l = l-d(D-d) $~*D~\ Thus a value of n

sensibly greater than unity requires both d and < to be of the same

order of greatness as D. For distant objects this is clearly impractic-

able. But with a compound instrument it is easy to arrange for the

equivalent conditions, namely that the power be small and the eye at

a great distance behind the second unit plane.

39. The Unilens.

There has lately been invented an instrument which seems at first

to constitute a refutation of what we have said about the practical

uselessness of the equivalent thin lens. Major Baden Powell's
"
Unilens

"
is a single lens which, when held at a distance of three

or four feet from the eye, performs the functions of a field-glass and

gives an upright magnified image of distant objects. The action of

the unilens is very interesting ;
it is a single convex lens of about six

feet focal length, so that when it is being used the eye is between the

lens and the principal focus. The image of a distant object is there-

fore a real inverted image, behind the principal focus and therefore

behind the eye. The pencils which are on their way to form this image
are intercepted by the lens of the eye, and the eye accommodates itself

to receive the resulting image on the retina. The accommodation
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required is of the same kind as that which prepares the eye to view

infinitely distant objects, but it is exaggerated to an extent which may
be called accommodation for objects beyond infinity. The manu-

facturers state that only three people out of four can use the unilens
;

the use of the instrument is found to tire the eye.

VI. REFLECTING INSTRUMENTS.

40. Analytical formulae expressing the laws of reflexion.

The laws of reflexion are : (i) the incident ray, the reflected ray,

and the normal to the reflecting surface at the point of incidence are

in one plane ; (ii) the angle of incidence is equal to the angle of

reflexion.

Using the notation of Article 1, with this modification that

(I
1

, m, ri) shall be the cosines of the reversed reflected ray, we see

that the diagram of that Article would be suitable for a reflexion if OC
were equal to OB and inclined to OK at the same angle as OB, but on

the other side of OK\ in fact if C were on .#/ produced, and CJ=JB.
Now this amounts simply to a law of refraction in which //

= -/*, and

so we get the laws of reflexion by putting this value of /*' in equations

(1). The result is

..................... (84).

ri + n = 2N cos <

J

When all the inclinations to the axis of z are very small we have the

approximate formulae

and when the mirror is a spherical surface whose radius p is reckoned

positive when the convexity is towards the positive direction of the

axis of z,

L = xjp, M=y/p,
and l' + l = 2x/p, m' + m =

2y/p .................. (86),

where (#, y) are coordinates of the point of incidence.

Formulae (86) are useful and easy to remember, but for our present

purpose it is convenient to modify them so that their form may corre-

spond with that of the formulae for a refracting surface. Since /' is

the projected inclination of the reversed reflected ray to the axis of z,

it is clear that, if we take an axis of z' in the opposite direction to the

axis of z
y

i.e. in the direction of the reflected central ray, the corre-

sponding projected inclination of the actual reflected ray is /'. This,
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multiplied by the index /w,
of the medium in which the ray travels, is

the reduced projected inclination (to the axis of z) of the reflected

ray. We may put -2 /*/?
=

*, and call K the power of the mirror,

noting that K is positive when the reflecting surface is convex to the

rays, and that * depends on the index of the medium in which the

mirror is placed.

With this notation the typical formula becomes

8' = 8 + K# ........................... (87),

which differs from the refraction formula only in the interpretation

of 8'.

41. Single Spherical Mirror.

In studying image formation by a single mirror, we take planes of

reference for the incident and refracted rays at reduced distances u, v,

respectively from the mirror. The coordinates of the points where

the rays cut these planes are (x , 3/o) and (#, y). Then by mathe-

matical reasoning formally identical with that for a single refracting

surface (Article 14), we get

8' = *+(** + 1)8
X' = (KV + 1) X + (KUV + U + V) 8 J

"

Thus the condition for conjugate focal planes is

KUV +u+v=0 ........................... (89),

and the magnification formulae are

m~ l = Ku + 1, m = KV+ I ..................... (90).

42. Geometrical interpretation.

There is a remarkable difference between the geometrical signifi-

cance of formula (89) when applied to a mirror and when applied to a

refracting surface. This is made clear if we replace reduced distances

by true distances. In the case of the mirror the index of the medium

is really irrelevant, and if we denote true distances by accented letters

we find that the condition for conjugate focal planes is

-2p-
l
u'v' + u' + v' = Q ..................... (91).

On the other hand for a refracting surface we get

KUV + fjfu + fjLv'
= Q ........................ (92).

The latter formula represents homography, the former represents a

very special kind of homography, namely involution.

That the homography represented by (91) is an involution is a fact

which, if it were not mathematically obvious from the form of the

equation, would be inferred at once from the physically obvious
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reciprocal relation between an object and its image formed by
reflexion. It might be thought that a thin lens must also yield

an involution relation between conjugate foci for a similar reason.

But though, in a sense, it is true that object and image are inter-

changeable for any refracting instrument, this interchange always

implies a corresponding reversal of the direction in which the rays

pass ;
if we insist on the rays always passing in the same sense, the

relation between object and image is not a reciprocal one. From the

purely mathematical point of view it might be argued that in the case

of a thin lens, //.
=

/u/, and the coefficients of u and v in (92) are

therefore equal ;
that is true, but as u and v are measured in opposite

senses from the lens their coefficients would have to be equal in mag-
nitude but opposite in sign in order that the homography should be an

involution. It is otherwise with formula (91), since u' and v' are

measured in the same sense from the mirror.

The double points of the involution of (91) are clearly given by
u=v' = and u=v' = p,

that is the apex of the mirror and the centre of curvature. For one

double point m = + 1, for the other m = -l.

43. Reflecting Telescopes.

As an example of the application of the reflexion formulae, let us

consider the instrument known as Cassegrain's telescope. The in-

cident light first strikes a concave mirror, is reflected backwards to

strike a convex mirror, and is again reflected
;
the light after the

second reflexion passes through a small hole in the middle of the

concave mirror and is refracted through a lens which constitutes the

eye-piece. If the radius of the concave mirror be R, that of the

convex mirror r, the power of the lens *, the distance between the

mirrors a, and the distance from the convex mirror to the lens b, we

have the same mathematical formulae as for a refracting instrument

of three lenses, the values of the powers and mutual distances being

The power of the whole instrument is accordingly, by (66),

2 2 4a\ / 2a

which must vanish if the instrument is to be in ideal telescopic adjust-

ment. In that particular case the angular magnification would be

B =
(1 + aiK2) (1 + aS KS)

+ ! KS

1 + K& + a*.
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In Gregory's telescope the second mirror is concave. The formulae

are derived from the formulae for Cassegrain's telescope by changing
the sign of r.

If the eye-piece used in either case is compound, i.e. consists of

more than one lens, the formulae still apply if * is the power of the

eye-piece as a whole, and b the distance from the second mirror to the

first unit plane of the eye-piece.

There are somewhat neater expressions for the constants in terms

of the focal lengths of the mirrors and the eye-piece, and the distances

between adjacent principal focal planes. They may be got by sub-

stitution in the formulae quoted at the end of Article 37.

44. Refracting instrument and single mirror.

From the point of view of pure geometry the formation of images

by light which first traverses a refracting instrument, is then reflected

by a mirror, and then goes back through the refracting instrument, is

of some interest. The power of the instrument being A, and that of the

mirror A', and the reduced distance of the mirror from the second

unit plane of the instrument being a, it is easy to see by considering

the equivalent single surface, that, save for a reversal of general

direction, the emergent light behaves as if it had traversed three

surfaces whose powers and distances, in order, are A, a, A', a, A.

And therefore if u, v be measured, both in the same direction, from the

first unit plane of the refracting instrument, the condition for con-

jugate focal planes is

AKuv + -r- v + -r M + a . =
0,

0/Cj OK3 OKjC'/Cg

where K is the function K3 formed from

By the symmetry of K, the coefficients of u and v in this relation are

equal ;
hence it represents an involution. On physical grounds this

was to be expected, since the relation between object and image is a

reciprocal one. The unit planes of the compound instrument clearly

coincide, namely at one of the double points of the involution
; the

other double point corresponds to magnification equal to 1, for an

interchange of object and image changes m to 1/m, and therefore when

object and image coincide it is necessary that m =
l/m, or mQ = 1. The

instrument can be replaced by a single equivalent mirror at the unit

plane, with its centre at the other double point of the involution
;
and

the equivalence is mathematically complete without any translation of

object or image, since the unit planes coincide.
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VII. ENTRANCE AND EXIT PUPILS.

45. Amplitude of the pencil of rays from any point.

The pencil of rays, proceeding from any bright point, which

traverses the whole of an optical instrument, is liable to be restricted

in consequence of the necessarily restricted area of each of the re-

fracting or reflecting surfaces of which the instrument is composed.
Thus the area of a thin lens available for transmission of light is deter-

mined by the circular edge of the lens, or by the aperture of the

opaque frame in which the lens is held
;
the pencil cannot be of greater

width than that necessary to fill this aperture. Some one of these

opaque boundaries (not necessarily that of smallest aperture) will

restrict the transmitted pencil to a greater extent than would any of

the others, and will thus be effective in determining the angular extent

of the emergent pencil. Or it may be that somewhere on the axis of

the instrument there is placed an opaque
"
stop

"
with a circular hole

in it, through which the rays must pass, and that this hole is so

narrow that its amplitude is what determines the extreme rays of the

transmitted pencil.

The effective "stop," whether it be coincident with one of the

refracting or reflecting surfaces, or not, has its aperture completely

filled with rays. The image of this aperture (treated as a bright

object) formed by the whole of the series of surfaces at which the rays

suffer reflexion or refraction after traversing the stop, is a circular area

perpendicular to the axis of the instrument which is completely filled

by the emergent rays (or by these rays produced backwards if neces-

sary). This circular area is called the "exit-pupil." The extreme

rays of the pencil converging to any image point are got by joining the

image point to all the points of the boundary of the exit-pupil.

The image of the effective stop which would be got by reversing

the general direction of the rays and using only the surfaces which lie

between the stop and the object-end of the instrument, is called the

"entrance-pupil." The extreme rays of that part of the pencil, which

enters the instrument from any bright point, which is destined ultimately

to emerge, are got by joining the bright point to all the points of the

boundary of the entrance-pupil.

Since the formation of a good image depends on keeping the

inclinations of the rays very small, there is an obvious advantage in

the use of a stop of small aperture. But there are the corresponding

disadvantages of a more restricted field of view and a diminution in

the quantity of the transmitted light.
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VIII. CHROMATIC DEFECTS OF THE IMAGE.

46. Dispersion.

Light is a periodic wave motion of the aether, but ordinary white

light is not a simply periodic motion having a single period, like the

motion of a simple pendulum ;
it resembles, rather, the more com-

plicated oscillations of a dynamical system having several degrees of

freedom, such as a number of particles attached at different points to

a string which hangs from a fixed end
;
the motion is very complex,

but may be regarded as compounded of a number of distinct motions

each of which is simply periodic, which have different periods.

Aethereal oscillations of different periodicities produce in the eye

different colour sensations, and white light is not light of any par-

ticular pure colour, but is a mixture of lights of different periodic

times or different colours, namely the colours of the rainbow and the

spectrum.

In free aether and in air lights of different colours are propagated
with the same velocity, but in other transparent media the light-

disturbances corresponding to different colours are propagated with

different velocities and have different indices of refraction. Conse-

quently any given refracting optical instrument is likely to produce
different effects upon beams of light of different colours

;
and to an

entering beam of mixed (e.g. white) light there will correspond, not

a single emergent beam of mixed light, but a number of emergent
beams of different colours probably in different directions and having
different focal properties. This is most strikingly exemplified in

Newton's method of producing a spectrum of sunlight by means of

a glass prism. The phenomenon of the separation of the beams of

different colours is called
"
dispersion."

Instruments composed entirely of reflecting surfaces are, of course,

free from dispersion effects.

47. Dispersive power of a substance.

In estimating the extent to which a substance behaves differently

towards light-beams of different colours, we fix our attention on two

standard colours in different parts of the spectrum, for example blue

and red, and we measure the refractive index for each of these colours.

The difference between the two indices, or any simple function pro-

portional to this difference, might be taken as a measure of the
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dispersive power so far as the selected colours are concerned. Of
course the standard colours have to be more precisely defined than

by mere colour-names
; they are identified by their positions in the

spectrum, being the colours corresponding to selected bright lines in

the spectra of familiar substances. For our purpose it will suffice to

call them "colour No. 1" and "colour No. 2," and to denote the

corresponding indices by ^ and
/>t2 .

The deviation produced by a prism of small angle a on rays
which are incident nearly normally is known to be approximately

(/a- 1) a. Hence the difference between the deviations of rays of the

two standard colours is (^ -^ a . The ratio of the difference, of

deviations to the absolute deviation of a ray of a third standard

colour (No. 3) is therefore

2 -/*i)/ (/*3-i),

and depends, not on the shape, but only on the nature of the material

of the prism. It is therefore a suitable quantity to take as a measure

of the extent to which the material behaves differently to the two

standard colours, and is called the
"
dispersive power

"
of the sub-

stance. It is usually written

(A/O/fc-l) (93),

the operator symbol A being used to denote the increment of the

function of /x on which it operates when /* is changed from /^ to /*2 ,

and the suffix being dropped in the case of colour No. 3. For brevity

the dispersive power is denoted by the symbol w. It must be noted

that a numerical value of TO for any particular substance is meaningless

unless it is accompanied by a precise definition of the standard colours

to which it refers.

The dispersive power w is usually a very small quantity. When
colour No. 1 corresponds to the C line (in the red), colour No. 2 to the

F line (in the blue), and colour No. 3 to the D line (in the yellow), the

values of w for some different kinds of Jena glass are roughly 1/67,

1/55, 1/65, 1/51, 1/44.

48. Powers of a thin lens for different colours.

The power of a thin lens of glass, situated in air, is given by the

formula
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where p and o- are the radii of curvature of the faces. Hence, for two

standard colours,

Dividing corresponding sides of these equalities we get

Or AK = KST .............................. (94).

This formula gives the difference between the powers, for the

standard colours, of a lens made of a material whose dispersive power
is known.

49. Achromatism.

Since, in general, a refracting optical instrument behaves differently

to light-beams of different colours, it follows that it has not simply one

set of constants A, B, C, D, but many such sets, a set for each colour.

And if objects which differ only in colour be placed successively in the

same position in front of the instrument, the corresponding images
will usually be in different positions and of different sizes. If the

object be white, or if the light proceeding from it be a mixture of

several pure colours, the instrument forms not one image, but a series

of images, in different positions, of different sizes and different colours.

The eye perceives all these images simultaneously, the resulting

appearance being usually a somewhat blurred image of the same

mixed colour as the object, surrounded by a party-coloured fringe.

This defect of the image is called
"
chromatic aberration," and an

instrument which is free or nearly free from the defect is said to be
"
achromatic."

In ideal achromatism the instrument would be such that the images
of all colours would be of the same size and in the same position. But

ideal achromatism is difficult of attainment, and an instrument-maker

is usually satisfied if he can cause the images of two standard colours

to coincide. When this has been effected it is generally the case that

the images of all the colours which lie between the standard colours in

the spectrum are much more nearly coincident than they would be in

the absence of the two-colour achromatism, and the same is true to

some extent for the other parts of the spectrum. Thus the image
formed by an instrument which is to this extent achromatic is very



48-50] IRRATIONALITY OF DISPERSION 47

much better than would be formed by an instrument designed without

regard to achromatism.

The most valuable device for the partial removal of chromatic

defects is the combination, in one instrument, of different kinds of

glass, having different dispersive powers. If the dependence of index

on colour were such as to give the same value to the ratio

for different kinds of glass, for every selection of three colours (p, <?, r\
then any instrument composed of these kinds of glass, if achromatic

for two colours, would be achromatic for all colours. The fact that

the law of dispersion has not actually this simple form is referred to as
"
the irrationality of dispersion."

The particular pair of colours for which the instrument is made

achromatic must be chosen with reference to the use to which the

instrument is to be put. If the instrument is to be used for vision,

the colours selected are those which, partly on account of the relatively

large extent to which they are present in white light and partly on

account of the greater sensitiveness to them of the nerves of the eye,

are most important in ordinary vision
;
such colours are those in the

neighbourhood of Fraunhofer's C and F lines. But if the instrument

is to be used only for photographic purposes, the chemical activity of

the colours becomes an important consideration, while their effect on

the eye no longer matters
;
the colours selected would therefore be in

the violet or ultra-violet part of the spectrum.

50. Partial achromatism.

Even for two colours, achromatism is not easy to obtain, and

sometimes the instrument-maker is content with partial achromatism.

Complete achromatism requires the two coloured images to be of the

same size and in the same position ;
if one of these conditions is

satisfied but not the other, the achromatism is partial. The eye is a

better judge of size than of distance, and so if only one of the con-

ditions can be satisfied it is better to achromatize for size than for

position.

It is further to be observed that an instrument may be achromatic

for a particular position of the object without being achromatic for all

positions of the object. This
"
particular" achromatism is of course

easier to obtain than the "general" achromatism which holds for all

positions of the object.
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51. Achromatism of a symmetrical instrument composed
of thin lenses in air.

So far as concerns the image formation corresponding to the first-

order approximation assumed throughout the present Tract, the

conditions of achromatism can be deduced immediately from the

four-constant formulae. Taking the magnification formulae,

,
m = Av+C.m

we remark first that for an instrument in air the first and last media

have their indices unity for all colours. Hence u, v are the true

distances of object and image from the instrument. The object being
in the same position for all colours, A u = 0. Achromatism for size

requires that A m.
= and therefore of course A - = 0. Achromatismm

for position of the image requires A v = 0. If therefore we apply the

operator A to the magnification formulae we see that

u&A+&B = ........................... (95)

is the condition for achromatism as regards size, and

v&A + A (7-0..... ...................... (96)

a further condition if the achromatism is for both size and position.

If the achromatism is only for a particular position of the object,

i.e. for a particular value of u, these equations as they stand represent

the conditions. But if the achromatism is to be for all values of u
y

we clearly require

A^l=0, A = ........................ (97)

for size, with the further condition

AG'=0 .............................. (98)
for position*.

It is a well known theorem that if f(x\ t x^ x$ ...) is a function of

the independent variables #1? #2 , #3,---> having continuous partial

differential coefficients, and if the symbol A be used for small

increments,
df a/ a/

A/= A#! + - A#2 + ^- A^3 + ...+,
9#j 9#2 9#3

where u> is small of a higher order than the increments
;
hence if w be

omitted from the right-hand side we have a statement of equality

which is very approximately true.

* Since BC-AD= l, the vanishing of A^-f, AB, and AC involves also the

vanishing of AD.
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Now the constants of the instrument under consideration are

functions of the powers of the component thin lenses and their

mutual true distances, and these distances are not affected by change
from one colour to another. So the operator A affects only the K'S,

and A* is in each case small. Accordingly we can apply the theorem

of the total differential, just quoted, and we have

dA
,

dA
/

BA AA ^4 ^ A K! + A *2 + ... + A *n ,

8/Cj dK.2 dKn

=
dK

KI&I + ^ "2^2 + ... +
a

KnwH (by Art. 48) ...(99),

with corresponding expressions for A B and A C. Substituting these

in the formulae (95) and (96), or (97) and (98), we have the conditions

for partial or complete, particular or general, achromatism.

52. Instrument consisting of two lenses.

For an instrument consisting of two thin lenses, K
I?

/c2> at a distance

a apart,

'

The conditions for general achromatism as to the size of the image,

namely AA =
0, AB =

0, are obviously equivalent to ^ =
0, tzr2

= 0.

Accordingly this partial achromatism for all positions of the object is

unattainable unless each of the thin lenses separately is achromatic,
i.e. made of a substance which has no dispersive power. But the only
known substances whose dispersive power is practically zero are those

whose index is not sensibly different from unity, and lenses made of

such material would have no power. So general achromatism as to

size is unattainable with two thin lenses at a distance apart.

The condition for achromatism as to size, for a particular position

of the object, is

{(1 + a*2) Citir1 + (l 4-aKj) K2 zzr2 }
w + aK2 ar2

= ...... (101),

which assumes a still simpler form if the lenses are of the same material,

so that T^ = zr2 . It is always possible to choose a, ^ ,
*2 so that this

shall be satisfied for a prescribed value of u.

53. Achromatism of the eye-piece of a telescope.

If the objective of a telescope be a reflector, or a compound object-

glass which is itself achromatic, it is necessary that the eye-piece also

L. 4
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should be an achromatic instrument. When the telescope is in ideal

adjustment the achromatism required in the eye-piece is of a particular

kind, corresponding to a particular position of the object. For the

object is the real image formed by the objective, and is in the first

principal focal plane of the eye-piece.

For this position of the object it is meaningless to talk of achro-

matism for size or achromatism for position, inasmuch as the final

image is infinitely distant and the linear magnification is infinite.

The pencil of rays proceeding from a particular point of the object

in the focal plane becomes, after refraction through the eye-piece, a

beam of parallel rays whose direction determines the angular position

of the image perceived by the eye. If the beams of different colours

enter the eye in different directions, there will be a series of images of

different colours and in different angular positions, in fact a chromatic

effect which would lessen the utility of the telescope. The kind of

achromatism to be aimed at is therefore parallelism of the emerging
beams of different colours.

This statement is however only approximately correct, for the eye-

piece has different focal planes for different colours. The object is

accordingly in the focal plane for one colour, but out of the focal plane

for all other colours. Only one of the emerging beams is a beam of

parallel rays, the others consist of rays which are in each case very

nearly parallel. The condition of achromatism is therefore more

precisely stated as parallelism of the principal or central rays of the

emerging pencils of different colours.

The formula for the direction of an emerging ray is

the notation being as usual. In the present application u has such a

value as to place the object in the first focal plane of the eye-piece,

# refers to a particular point of the object, and 8 to a particular ray

proceeding from that point.

We shall apply the operatorA to both sides of this equation, noting

that though for one colour Au + B is zero it is not necessarily zero for

any other colour. As # and 8 are unaffected by A
,
the result of the

operation is

the condition of achromatism is that, when 8 corresponds to the

central ray of the pencil,
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Thus the condition of achromatism is

when a suitable value has been substituted for 8 .

It is usual, though not correct, to take as the central ray of the

pencil the ray which, before entering the eye-piece, is parallel to the

axis. For this ray 8 =
0, and therefore the corresponding condition

for achromatism is

A^l = ............... ............... (102).

Thus we have the condition usually given for the achromatism of the

eye-piece of a telescope in ideal adjustment, namely that the powers
of the eye-piece for the standard colours shall be the same.

In the case of a pencil of nearly parallel rays, it cannot matter

much which of the rays is taken as the principal or central ray, and

therefore the condition just obtained must give very good achromatism.

But it is undoubtedly more precise to treat the ray through the centre

of the objective of the telescope as the principal ray. For this ray
& = & /F, where F is the focal length of the objective, and so the con-

dition for achromatism is

or if we put u -f F= b, so that b is the distance between the objective

and the field-lens of the eye-piece,

(103).

Let us consider, as an example, an eye-piece consisting of two thin

lenses KI}
*2 ,

at a distance a apart. For this eye-piece

A =K1 + K2 + a*l*2>

and the usual condition of achromatism is

0= AA =

On the other hand B=\ + aK2 ,
A5 = K2 ra-2 ,

and the more precise

condition for achromatism is

vTz
= ............ (105).

The formulae are the same if we agree to neglect a/, the ratio of the

distance between the lenses of the eye-piece to the distance between

eye-piece and objective. This is usually quite a small quantity.

The usual condition of achromatism assumes a simple form if the

42
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lenses of the eye-piece are of the same kind of glass. When this is the

case TOI
= -zsr2 ,

and the condition reduces to

Kj + K2

Put KJ
= I/A, *2

= -
1//2, so that /!, /2 are the focal lengths of the

lenses, positive when converging, and we get the still simpler result

2a=/!+/a ........................... (106),

or, in words, the distance between the lenses is the arithmetic mean of

their focal lengths. This condition is satisfied by the Huygens eye-

piece.

54. Achromatism of object-glasses.

For an instrument consisting of two thin lenses close together the

constants are

A=K1 + KZ , J9=l, (7-1.

Clearly there is only one necessary condition for two-colour achro-

matism, namely
A^l=0 ...........................(107).

When this is satisfied the system is achromatic for size and position of

the image, wherever the object may be.

The condition is equivalent to

K^ + KaTOV^O ........................ (108).

In order to construct an instrument of this kind, of given power A,
and achromatic for the two standard colours, it is only necessary that

the powers *!, *2 of the component lenses should be the quantities

determined by the equations

*! + K2
= A

, CTj KX + tzra *2 = .................. (109).

It is to be remarked, however, that the two lenses must not be of the

same kind of glass, for if^ = ra-2 the second equation becomes K
X + *2 = 0,

which is inconsistent with the first. The possibility of constructing an

achromatic object-glass of power different from zero depends on the

availability of two kinds of glass having different dispersive powers.
For an instrument consisting of three thin lenses close together,

the constants are A = ^ + K2 + KS ,
B =

1, C=l, and the sole condition

of achromatism

K1 ra-1 + K2 or2 + ic8'rar3
= ..................... (HO).

If, therefore, we consider three standard colours, and use is for the

dispersive power of a substance with reference to colours No. 1 and
No. 2, and w for the dispersive power with reference to colours No. 1
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and No. 3, we can construct an object-glass achromatic for the three

standard colours and of given power A, by choosing K
lt *2 ,

*
3 so as to

satisfy the equations
K

1 + K2 +K3
=

.4j
'3
= <> V (111).

<3 =o J

But the possibility of doing this depends on there being available kinds

of glass having such values of BT, or', as shall allow of the consistence

of these equations. The objective of the Sheepshanks instrument in the

Cambridge Observatory is achromatic for three colours. It may perhaps

seem unfair to apply to the components of the objective of a great

telescope the theory of thin lenses, but it is to be remembered that all

that is here meant by the term "
thin

"
is that the thickness is small

in comparison with the radii of curvature of the surfaces.

55. Instrument not composed of thin lenses.

For the sake of generality we consider a symmetrical refracting

instrument in which not only the intermediate media but also the

media outside the instrument at either end are possessed of dispersive

power.

The magnification formulae

1

m

are now better rewritten in the form

= ()#' + It, m = ()v+C,m \/V V/
where u, v' are true, not reduced, distances. The operator A leaves

u' unaltered; and achromatism for size requires A?ra = 0, A(-J=0;
achromatism for position as well as size requires the further condition

Hence it appears that the condition of achromatism for the size of

the image is

(112),

and that the further condition for achromatism as to the position of

the image is

(113).
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The expansions of such expressions as A
( )

are much more com-
V/^-o/

plicated than in the case of thin lenses, for each power Kr depends
on two indices, ^r-^ and ftn and each reduced distance ar is of the form

a'r/fjir) where a'r is the corresponding true distance. Thus

^ "^ (114>5

and, as

Consequently for any function / (^ , !,... KW),

h

r fr r r Pr
~

Pr-l r

...(116).

It appears, therefore, that the general conditions of achromatism

involve heavy formulae. In the case of simple instruments, such as

the thick lens, it is best to discard general formulae and proceed from

first principles.

56. Single thick lens in air.

Let the radii of curvature of the surfaces of a lens of index
//, be

pi and p2 ,
both positive if the surfaces are convex

;
and let the thick-

ness be t. We shall examine what condition must be satisfied if the

lens is to have the kind of achromatism required in the eye-piece of a

telescope.

The power is

A= /*-! /*-!
,

* 0*-1)
2

Pi Pa /*'

whence, when squares of A/A are neglected as usual,

A /x
- 1 /* (p.

-
1) t -
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The condition for the particular kind of achromatism contemplated
is A A =

0, which is equivalent to

i

or f.-^k +
)... ...(118).

If the lens has this particular thickness it will be achromatic.

The procedure by which this result has been obtained is that which

usually leads most quickly to the desired condition. In the present

instance it happens to be easier to equate A l to A z without using the

A operator. We thus get the more precise form of the condition,

namely

57. Jena glasses*.

With a view to the construction of achromatic combinations of

lenses, a large number of kinds of glass having different optical

properties are manufactured at Jena, and numbers specifying these

properties are given in the catalogue published by the manufacturers.

For this purpose the indices of refraction are measured for five

different colours which are identified by means of bright lines in

familiar spectra ;
these are a red potassium line Ka denoted by A',

a red hydrogen line Ha. denoted by C, a yellow sodium line Naa
denoted by D, and two other hydrogen lines, Hft which is greenish

blue and Hy which is blue, denoted by F and G' respectively. The

lines are enumerated in descending order of wave length ;
the interval

from A' to G' is not far short of an octave.

The dispersive properties of a particular glass, so far as these

colours are concerned, can be specified by giving the absolute value

of the index for the line which lies near to the brightest part of the

visible spectrum, namely D, and the differences of the indices for the

four intervals CF, A'D, DF, FG'. As the interval CF contains the

part of the spectrum which affects the eye most powerfully, the dis-

persive power is taken to be that corresponding to these two lines,

namely w*(f** i*c)/0*j> !) This number is small, but if we put

\\TS
= v we get a fairly large number, which is chosen in preference to

w for tabulation in the catalogue.

* Most of the numbers quoted in this and the following Article are taken from

Miiller-Pouillet's Lehrbuch der Physik, Bd. n.
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The following table exhibits the optical constants of a few of the

Jena glasses, the numbers at the heads of the columns being those

which distinguish the respective glasses in the catalogue.

Kind of Glass
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the more nearly these constants are equal in the case of two kinds of

glass the less is the corresponding irrationality of dispersion.

The above table is therefore to be supplemented by the following :

Kind of Glass
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These numbers are much smaller than in the previous case, and repre-

sent much better achromatism.

The difference between an objective which has been rendered as far

as possible achromatic and an object-glass consisting of a single thin

lens will be appreciated on comparison of the above figures with those

for a converging lens of the glass 060, whose focal length is 1000 mm.
A simple calculation gives

FA,-FC = 5'8 mm., FC -FD = 4'9 mm.,

whence it appears that the foci for the five colours are spread out over

a length of 31*8 mm.

IX. THE ABERRATIONS OF THE THIRD ORDER.

59. Improved Approximations.

In the foregoing discussion of the symmetrical optical instrument

we have neglected the second and higher powers of the small quantities

typified by #, y, 8, e. It is worth while to enquire, without going into

any detail, what is the nature of the improved approximation got by
neglecting only the fourth and higher powers of these quantities.

At the outset we must notice that in the first order approximation

it was legitimate to interpret 8 and c as the reduced projected in-

clinations, or the reduced sines or tangents of the projected inclinations,

of the ray to which they referred. In the approximation of higher

order it is necessary to be more precise, so 8 and e must be understood

to be the reduced direction cosines, i.e. direction cosines multiplied by
the refractive index of the medium through which the ray is passing,

The third direction cosine n is expressed in terms of 8 and by the

relation n = (p?
- S

2 - e
2

)^//*-

For any selected pair of planes of reference we have obtained

approximate formulae of the type

8 = Ax, + BB
,

x = Cx* + Z>S .

From these, by elimination of 8
,
we derive

and similarly

r

These formulae express the coordinates of the point of intersection of
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the second plane of reference by that ray from (# , y ) which arrives

with the direction denned by (8, e).

The approximation which takes account of terms up to the third

order is got by adding suitable corrections to the above expressions for

x and y. It is, in fact,

1 D
9=j}9%+-g

where the function/may contain terms of the second and third orders.

The symmetry of the instrument is our justification for putting in the

expressions for x and y the same function with differently arranged

arguments.

From the symmetry of the instrument it is further clear that, to

any ray starting from (# , y ) and arriving at (x, y) with direction

(8, e), there corresponds a ray starting from (-# , y*) and arriving

at (atj-y) with direction (-8, e). In other words, if the signs of

#o, ^01 8> ,
be changed, the only change in x and # is a change of sign,

and therefore the only change in f (# , y , 8, e) and in/ (# ,
#

, e, 8) is

change of sign. Hence / cannot contain any terms of the second

order
;

it consists entirely of terms of the third order.

There are 20 terms in the general homogeneous expression of the

third order in 4 variables. But from considerations of symmetry we
shall shew that many of these cannot be present in/(# , y , 8, e).

In the first place we notice that if we put y = and reverse the

sign of c, symmetry with respect to the plane xz requires that the

value of x shall remain unaltered. Any term which would be altered

by this change cannot be present in f. Thus # 2

e, 8
2
e,

3
,
# 8 must be

excluded.

Again, if we put XQ
= and reverse the sign of 8, symmetry with

respect to the plane of yz demands that the sign of x be reversed.

Terms which do not satisfy this condition cannot occur in /. Thus

V*, yfrt %&, %*, are to be excluded.

Therefore /(#<> #o> ^> ) is of the f rm

......(125).

Symmetry, however, carries the simplification still further. If we
turn the axes of x and y through an angle 0, the new x is .rcosfl

+ ysm6, the new y is ycosO #sin#, the new 8 is 8cos0 + esin0,

and the new e is ecos#-8sin0
;
and #

, yot are changed in the same
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manner. But the new x must be the same function of the new inde-

pendent variables as the old x is of #
, y , 8, e. Hence

cos0/(# , y , 8, e) + sin0/(# ,
#

, *, 8)

=/ (x cos + ?/ sin 0, # cos - XQ sin 0, 8 cos + e sin 0,

cos0-8sin0) ...... (126),
and this must be true for all values of 6.

Differentiate both sides of the equality with respect to 0, and put
= after differentiation ;

the result is

(^o,y*i 8
> )

......

On substitution of the twelve-term expression for /in this equality, it

is seen that the relation is not satisfied unless the coefficients are

subject to the following restrictions :

=
0, h = j, k =

So the function / must be of a type involving only six constants,

namely

It is clear that this form of /satisfies not only condition (127) but

also condition (126) ;
for all the expressions in brackets on the right-

hand side retain their form when the axes of coordinates are turned

through the angle 0, so that / behaves like a linear function of the

arguments.
The final simplification is based upon optical considerations, and is

got by use of the well-known theorem that there is a function V such

that

dV= MX + cdy + \
2 - S2 - <?dz ............... (129),

where V is, in fact, the optical path from (# , yot z ) along the ray to

(as, y, z). (Cf. Art. 62.)

If we add d (- S# - ey) to both sides we get

yd+ J^-&-<?dz = d(V-%x-ey) ...... (130),

a total differential, the independent variables now being changed from

x, y, z to 8, e, z. From this it follows that

and consequently that

#o, , S) ............ (132).
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On substituting in this condition the six-constant formula for ft we
find that the equality is not satisfied unless m = 21. Thus the function

e
2

)

(133),

and involves only five constants.

If we choose the second plane of reference to be the conjugate focal

plane of the first plane of reference, D becomes zero, and the formulae

expressing x, y in terms of # #o> ^ >
reduce to

x1Q .x

where f is of the form of expression (133).

If / were absent, x and y would be independent of 8 and and

would be proportional to # and yQ ;
thus to any bright object in the

first plane of reference there would correspond an image similar in form

to the object and made up of ideal point-images. The extra terms

included in f represent deviations from the ideal image formation and

are called aberrations
;
there are five aberrations, as there are five

constants in f.

60. Aberration Curves.

With a view to finding out what changes in the appearance of the

image correspond to the various terms in /, it is convenient to intro-

duce new variables instead of 8 and e. Let us take another plane,

perpendicular to the axis of the instrument, at reduced distance w
beyond the second plane of reference, and let (, >?) be the coordinates

of the point where the ray strikes this plane. Then

8 =
(
- B- IXO)/W, e = (r)-B-

l

yQ)lw (135);

these results are only approximately true, since they treat 8 and e as

reduced tangents instead of reduced direction cosines, but they are

sufficiently accurate for substitution in / which is small of the third

order.

Substituting these expressions for 8 and e in/(# , # , 8, f), and for

brevity denoting (Bw)~
l

by A, we get

(I- h\) x, (e + if) + 2&V (I
- M) OPO * + yo?) (136).
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If, therefore, we introduce a new set of constants we have

x = B-^x, + OTOJ 3/0, , 17) 1 n O T N

where

o
2 + y?}

)

I ............... (138).

2 Tx* (x +M) J

Since the axes can be turned so as to bring any assigned point of

the object into the plane of x, we do not lose any generality by

supposing y to be zero. When this is the case our formulae become

x =

y =
rj

+
>y

+ xoi + - x
' '

where x' and y' are written for # - B~ lxQ and T/ respectively, i.e. for the

relative coordinates of the point where the ray strikes the plane of the

first-order image, relative namely to the point where it would strike

this plane if there were no terms but those of the first order.

So far we have not considered the value to be assigned to w. We
take the plane specified by w to be the plane of the exit-pupil. This

choice has the advantage that it enables us to examine the trace, on

the image-plane, of the extreme rays of the pencil, b}^ making the point

(, rf) traverse the boundary of the exit-pupil, which is of course a

circle, say
2 + if

= r2
.

It is, besides, convenient to regard the pencil as made up of sub-

sidiary sheaves or hollow cones of rays which cut the plane of the exit-

pupil in circles having their centres on the axis of the instrument.

For example a ray of the sheaf which cuts the plane of the exit-pupil

in the circle
2 + ff

= o-
2

may be defined by putting = a- cos <j>, 17
= a- sin <

;

if we let </>
take all values from to 2?r, (, 77) describes its circle, and

(at, y'} describes in its own plane a curve called an aberration curve.

The aggregate of the aberration curves for values of a- varying from

zero to r will correspond to the patch of light in the image-plane which

takes the place of the ideal point-image.

61. Nature of the five aberrations.

In order to appreciate the physical significance of the five aber-

ration constants, we shall examine in turn the consequences of the

presence of each constant when the remaining four are zero.

(i) Suppose P is the only constant which does not vanish. Then

. .
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The aberration curves are concentric circles of radius Pa3
; and so,

instead of a point-image, we have a circular patch of light of radius

jPr3
,
the size therefore being the same for all points in the object plane.

This defect is called spherical aberration.

(ii) Suppose Q is the only constant which does not vanish. Then

x' = Qxo\ ^ = ........................ (141).

Both x and y are absolutely independent of and
rj, and are

therefore the same for all rays proceeding from the object point. So

the image of a point is a point. But the distance of the image-point

from the axis is not proportional to the distance of the object point

from the axis, so the image and the object are not geometrically

similar. If Q is positive

xlx, = B~ l +Qx^ ........................ (142)

and so increases with # . If the object is a square with its centre on

the axis, the corners of the image-figure will be proportionately

further from the axis than the centres of the sides ; so the image will

be a curvilinear quadrilateral whose sides are concave outwards. If Q
were negative the image-figure would have its sides convex outwards.

The defect represented by Q is called distortion.

(iii) Let R be the only constant which does not vanish. Then

x = Ex, (3f
2 + rf)

= Rx<r (2 + cos
2<A)|

2
'

J

The aberration curve corresponding to a- is a circle whose centre has

relative coordinates (ZRx^, 0) and whose radius is Rx^. For

different values of o- these circles constitute a series whose centres

lie on the line joining the first-order image-point to the axis of the

instrument, and whose radii are in each case half the distance of the

centre from the first-order image-point. They all touch a pair of

straight lines which cut one another at an angle of 60. Thus the

patch of light is wedge-shaped or balloon-shaped, with vertex at the

first-order image-point, the wedge extending from or towards the axis

according as R is positive or negative.

The defect of the image represented by R is called coma.

(iv) The defects represented by the constants $ and T are best

considered together. Let us suppose that all the constants but these

two vanish, and we have

J = (8+T)xM, y'
= (S-T)xfii ............ (144).

Consider the patch of light which the rays from (a? , / ) would

make on a screen in the plane parallel to the plane of the first-order
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image, at a distance further from the instrument. If (a, /?) be the

coordinates of the point where this plane is met by the ray defined by

(, 17),
it is clear that the part of the ray between the image-plane and

the plane of the exit-pupil is divided at (a, /?) in the ratio of to

/*w-, so that

+ (8+T) x*t }
+

,

The extreme rays of the pencil are such that 2 + if r2

;
and the

corresponding relation between a and /?, namely

fawa-faw-QS- 1

^}* {ywpY
{
+ (jw

-
) (8 + T) *?}* {

+ G0 -
(fl- T

7

) tfo
2

}

2

is the equation to the boundary of the patch of light made on the

screen.

The patch is in general elliptical, but one of the principal axes

vanishes and the patch becomes a short straight line perpendicular

to the plane joining the first-order image-point to the axis of the

instrument if has the value 15 where

ti=-&(8+^*fl\i-(8-+T)*f}
= nw (&+ T) #o

2

approximately ............ (145).

This short straight line may be called the primary focal line.

Similarly the patch reduces to a short straight line in the plane

through the image-point and the axis of the instrument (the secondary

focal line) if has the value 2 ,
where

t=-fiw(J8T) x*, approximately ............ (146).

The distance between the two focal lines 2
~

1 ,
is 2pw%

2

T\.

There are two values of for which the patch is circular. One of

these is JAW which is not necessarily small
;
but there is one which must

be small, namely 3 > given by

or 3
=

fjLwS%(? approximately .................. (147)

=*&+.
This circular patch is called the circle of least confusion

;
its radius

is \pwTa;*\. If T is different from zero there is no single point

through which pass all the rays from (# , y^ that is to say, no point

image. The best approximation to an image is represented by the

circle of least confusion, and the image picture made up of these

circular patches is necessarily slightly blurred. If $ is zero, so that

3 is zero, the circles of least confusion corresponding to all the points
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of the flat object lie in the plane of the first-order image. Thus the

best image is flat and is in that plane, but it is made up of overlapping
circular patches instead of points. This defect is called astigmatism ;

it is the defect corresponding to the constant T.

If T is zero, while S is not zero, the focal lines and the circle of

least confusion coincide and, as the radius of the circle is then zero,

they are represented by a single point through which pass all the rays

from (XQ, #o). The pencil is, in fact, stigmatic, there is a point image.
But this point image is not in the plane of the first-order image, it lies

beyond it at a distance 3 or i*.wSx$, and this distance, moreover, is

different for the different points of the object, vanishing only for that

point of the object which lies on the axis of the instrument. Thus the

image picture of the flat object is stigmatic but curved, being on a

surface of revolution which touches the plane of the first-order image
at its vertex. If p be the radius of curvature of this surface at its

vertex, reckoned as positive when the concavity is towards the

instrument,

whence l/p
= 2fJiw*S ........................... (148).

The defect of the image represented by the constant S is called

curvature of the field.

The manner in which A. enters into the expressions for which

P, Q, R, /S',
T are abbreviations, shews that a proper adjustment of the

position of the effective stop may serve to diminish some, or to remove

one of the aberrations. But in designing an instrument from which

(for a particular image plane) all five third-order aberrations shall be

absent, it is necessary to know how the constants depend on the

composition of the instrument. The reader who is interested in this

subject is recommended to consult Mr R. A. Herman's Geometrical

Optics, Ch. xiv, or Prof. E. T. Whittaker's Tract on the Theory of the

Optical Instrument (Cambridge, 1907). The method of interpreting

the aberrations given above is based on Prof. K. Schwarzschild's

memoir (Untersuchungen zur geometrische Optik, Berlin, 1905); but

in the discussion of astigmatism and curvature I have followed a

suggestion made by Mr Bromwich, who pointed out that the assumption

of the existence of focal lines, legitimate as it is in first-order approxi-

mations, requires special justification in an argument which takes

account of small quantities of the third order.

L.
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X. SYLLABUS OF PROPOSITIONS CONCERNING THE CHARAC-
TERISTIC FUNCTION AND THE FOCAL LINES OF A PENCIL

OF RAYS OF LIGHT.

62. Definition and properties of the Characteristic

Function.

(i) Let (#o, #oj #0) be the coordinates of a point P situated in a

homogeneous medium of index /x() ;
let (#, y, z) be the coordinates of a

point Pt
situated in another homogeneous medium of index ^n ;

let

there be, between P and P, n l other media whose indices are

/Xj , /x,2 ,
...

/xn_!, separated by refracting surfaces. Consider a path from

PO to P, made up of straight lines P Qi, QiQz, QnP, the points

QiQ*f'Q being on the refracting surfaces. Let the direction

cosines of the straight path in the medium /*,. be
(/,.,

mr , ??,.),
and its

r= n

length srt and let the coordinates of Qr be (#,., yrt zr\ Let S prsr be
r=Q

denoted by W. Denote by 8W the difference between W for this path
and the corresponding sum for a neighbouring path, P QiQ2

'

- - Qn'P,
of the same type, proceeding from the same starting-point. If the

coordinates of Qf
'

are (#,.
+ #,., yr + fyr ,

zr + 8zr), and if all the incre-

ments denoted by 8 are so small that their squares and products may
be neglected, it is seen, by projection, that

+ (/*r_!mr-!
- prmr) 8yr

r=l
+

(/x,._ 1%_ 1 -/xrw,)^,,j ............ (149).

(ii) If the original path be the course of a ray of light from

P to P, the cosines of the straight pieces which terminate at Qr will

obey the laws of refraction. Consequently the sum which forms the

second part of the expression for SJF is equal to

S Or-l COS <,.
-

ft,. COS <

the notation being that of Article 1.

Since (&zv, fyn ^,.) are the components of a displacement of Qr in

the surface to which (Lr ,
Mr ,
Nr ) is normal, each term of this sum is

zero.

Consequently the variation of W from an optical path is

nn 8z) ............... (150).
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(iii) For a variation which keeps P fixed, the right-hand side of

(150) is zero. Thus, for different paths from P to P, the optical path

gives a stationary value of W, usually a minimum. This stationary

value is called "the reduced path" or "the optical path" from

jP to P. It is proportional to the time that light takes to travel

from P to P. It is denoted by V.

There is usually only one optical path between two given points.

If, however, P and P are conjugate foci, there is an infinite number

of optical paths from one to the other, all having (to the degree of

approximation contemplated) the same value of V.

(iv) V is a function of
(a?, y, z] having the properties

It is called the "characteristic function" of a pencil of rays of light

proceeding from P .

(v) Kays of light which proceed from a common point-source P ,

possess, after any number of refractions, the property of being cut

orthogonally by a family of surfaces. These are the surfaces V= const.

They are the wave surfaces of Physical Optics.

(vi) The preceding propositions can easily be extended to include

reflexions.

63*. The modified characteristic function.

(vii) Omitting the suffix n of the previous Article, consider the

function U defined by the relation

U V
i*. (Ix + my) (153).

In virtue of the equalities

T =M =/*i n = Jl-l*-m* .........(154);ox oy

it is open to us to regard x, y and n as functions of /, m and z. This

is supposed to be done, so that U is a function of the independent

variables (/, m, z). And since

(155),
it follows that

317 dU dU

U is called the
"
modified characteristic function."

*
I am indebted to Mr Bromwich for the whole of Art. 63.
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(viii) Noting that n is a function of / and m only, we may
integrate the third of equations (156) partially with respect to z.

Thus we see that U must be of the form

U = finz + <f> (/, m) ..................... (157),

where the form of < depends on the past history of the pencil of rays.

(ix) The foregoing results are exact. If we pass to the case of thin

pencils, for which / and m are so small that /
3
,

l
z
m, etc. may be

neglected, and if we assume that the origin is on the central ray

(/
=

0, m =
0), so that ^r

=
0, ^ =

0, when /=0 and m =
0, we may

cl QTIfl

write

4>=$(pl* + 2qlm + rfn?) ... ............... (158),

where p, q, r are constants defining the form of the pencil.

Thus the approximate form of U for a thin pencil is

U= p [z{l -%(1
2 + w2

)} + J (pi
2 + 2qlm + rw2

)] ...(159).

(x) This leads to the approximate form of V for a thin pencil,

namely by eliminating / and m from

The result is ---
......... (160).

(xi) In those optical problems to which the characteristic function

can be advantageously applied, the constants p, <?,
r are not found

directly ;
but the form of V is found for points near to a specified

point on the central ray. Let this point be taken as origin, and let

the approximate form of V near this point be

By an elimination analogous to that used in proposition (x), we
deduce the corresponding approximation to U, namely

and a comparison of this with (159) gives the values of p, q, r, namely

p/b = ql(- h)
= r/a = l/(ab

- A2

).

Putting these values in (160) we get

v _ 1
-f bif

-
(ab

-
h*) z (a? + , ,

^ : *
-

for points near the axis of z but not necessarily near the origin.
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(xii) The formulae of the last three propositions are greatly

simplified if the axes are so chosen that h (and consequently q) is zero.

In this case, putting

p=l/a = pl9 r=l/b = P .2 ,

we get the standard forms

H>-*te*;&] ...................."<*>

U=n[z + {(Pl -z}l* +
(P,-z)m*}] ............ (163).

(xiii) V depends on #
, y ,

z0t in such a way that

dV
,

dV 5F
?-

= -M>, 97
= -PO*WO, = -/*ono ......... (164).<w oy oz

U depends on #
, y ,

z
,
in such a way that

dU W d[7

(xiv) Let a pencil of rays set out from a point (# , y ,
z ) very

near the axis of a symmetrical optical instrument and traverse the

instrument
;
and let it be desired to find the form of V and U for the

emergent pencil.

Take the plane z = z for the first plane of reference, and the

plane z = for the second plane of reference. Let the corresponding

constants be A
, B', C', D'. It will be found that, for points very near

to the origin,

V=pz- no z + p {
B' (x* + f] - 2 (XQX + y y)

+ C' (x<? + y?}} + const.......... (166),

17= pz -

-H*iy(l* + m*)} + const.......... (167).

For points which, though near the axis, are not very near the

origin, the corresponding forms are got by substituting C' + A^~lz for

C', and D' + B'^z for D'.

64. The focal lines of a pencil of rays.

(xv) The normals to a surface at points in the immediate neigh-

bourhood of an ordinary point of the surface pass approximately through

two straight lines at right angles. These lines are parallel to the

tangents to the lines of curvature at the point considered, and pass

through the centres of principal curvature.

To indicate the degree of approximation, let (, >?, ) be a point

53
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near the origin, on the surface whose approximate equation near the

origin is 2z = ^Vi"
1 + ^P2~

l
> The shortest distance between the normal

at (, >7, ) and the line x = 0, z = plt is pr
]

plus terms of higher order.

The shortest distance between the normal and the line y = 0, 2 = p2 ,
is

y&z'
1

plus terms of higher order. These shortest distances are small of

the third order in and rj.

(xvi) A thin pencil of rays, proceeding from a point-source of

light, will, after any number of refractions or reflexions, pass approxi-

mately through a pair of focal lines at right angles, namely the focal

lines of any one of the surfaces to which the rays are normals.

(xvii) Normals are drawn to the surface 2z = ^Vr 1 + y*p2

~ l at the

points where it is met by the thin elliptic cylinder aria? + y*/fi
2 = 1.

The trace of these normals on the plane z=p is approximately the

ellipse

^/a
! (i-wr 1

)
2

+//y8
2 (i-m- 1

)
2 =i (168).

The changes in the size and shape of this ellipse, as p varies, should

be studied.

For a particular value of p the ellipse is a very small circle, namely
of radius

(ft
-P*)/^"-

1 * ft/3-
1

) (169).

In the optical application this is the circle of least confusion.

It frequently happens that the pencil of rays is bounded by a

circular stop or the circular aperture of a lens, through which the

pencil passes obliquely, the angle of incidence being <
;
and therefore

frequently a/ft cos <.

(xviii) The oblique refraction of a thin pencil of rays is considered

in the particular case specified by the following limitations : (1) The
focal lines of the incident pencil are supposed to be respectively in and

perpendicular to the plane of incidence of the central ray of the pencil ;

(2) the focal lines of the normals to the refracting surface are supposed
to be respectively in and perpendicular to the plane of incidence.

When terms of a higher order of smallness than the second are

neglected in the equations of the refracting surface and the orthotomic

surfaces of the pencil, these suppositions guarantee symmetry about the

plane of incidence. Hence the refracted pencil also has its focal lines

in and perpendicular to the plane of incidence.

Focal lines perpendicular to the plane of incidence are called

"primary." Plt the point where the primary focal line of the in-

cident pencil cuts the plane of incidence, is the limiting position of

the point of intersection of the central ray of the pencil with a
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consecutive ray which is also in the plane of incidence. ft, the

corresponding point for the refracted ray, is defined in a similar

manner. 15 the point where the primary focal line of the refracting

surface meets the plane of incidence, may be called the primary centre of

curvature
;

it is the limiting position of the intersection of consecutive

normals to the surface, both in the plane of incidence, one being at

the point of incidence of the central ray.

The secondary focal lines are marked by their intersections

PZ, ftj 2 with the central incident ray, the central refracted ray,

and the normal to the refracting surface at the point of incidence K of

the central ray. They are the limiting positions of the points of inter-

section of these lines with the corresponding lines for a consecutive

point of incidence K', such that the arc KK' is perpendicular to the

plane of incidence.

Distances being measured positively into the second medium, the

position of ft is determined by the equation,

/x'cos
2
<ft' /u,

cos2
< _ /u/ cos <'-//, cos <ft (

,

KO,

By the first law of refraction it is seen that P2 , ft, 2 lie in a

straight line, and so the position of ft is determined by the equation,

/*' V* _ /*' cos <f>
-

/x,
cos <fr

(
.

KQ, KP,~ KG,

This theorem is of wider application than might at first be supposed.

Restriction (2) is satisfied for a spherical surface, whatever be the plane

of incidence. Restriction (1) is satisfied if the incident pencil is homo-

centric. In many applications (1) is satisfied in virtue of the previous

history of the pencil ;
for example if a homocentric pencil enters a

symmetrical optical instrument, and if its central ray intersects the

axis of the instrument, then at every refracting surface in the

instrument the incident pencil will satisfy this restriction.

(xix) The formulae for reflexion which correspond to (170) and

(171) may be derived from these by putting /x'
=

-/x. It is easy to

prove them independently.

65. Alternative methods of finding the form of V.

(xx) Choose origin and axes so that one of the orthotomic surfaces

of the pencil under consideration is 2z = a?/pi + y/p2 ; express as a

function of the coordinates (#, y, z) of a point P, the length of the

normal from P to the surface. This, multiplied by /*, must differ from
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the value of V at P only by a constant. Thus formula (162) is

obtained.

(xxi) Another method of proof is to assume that V can be

expanded in the form

V=A+Bx+Cy + Ea? + Fxy + Gf,

where the great letters represent functions of z. The axis of z being

a ray of the pencil, 9 Vfix and d Vfiy must vanish if x = and y=0,
and 9 V/dz = p ;

hence J3 = Q, (7=0, A = pz + const. By suitable choice

of coordinate planes F can be got rid of. The functions represented by

the other letters must be such as to make the equation

correct to the second order in x and y. Substitution gives differential

equations with respect to z, whence the forms of E and G can be

determined. The constants p1? p2 are constants of integration.

(xxii) The transition from (162) to (161) is effected by means of

the following theorem in two-dimensional analytical geometry :

The orthogonal transformation of axes which converts X'2

jpi + Y2

/pz

into aa? + Zhx + b* will convert

ax* + Ihxy + %2 - \ (ah -
7*
2

) (x*

(xxiii) The focal lines of the pencil whose characteristic function

is given by (162) are z = p1} # = 0, and z = p2 , # = 0.

66. The general problem of oblique refraction.

(xxiv) From its definition as a reduced path, it is clear that the

characteristic function cannot undergo any abrupt change of numerical

value, as the pencil traverses a refracting surface. But the charac-

teristic functions of the incident and the refracted pencils are different.

The general problem of the oblique or normal refraction of a given

thin pencil at a given refracting surface can be solved by obtaining the

characteristic function of the refracted pencil ; this function is deter-

mined by its having to satisfy two conditions, namely that it shall be

of the standard algebraical form when referred to the standard axes

of the pencil, and that it shall be arithmetically continuous, at the

refracting surface, with the known characteristic function of the

incident pencil.

Normal refraction through an astigmatic lens (e.g. a cylindrical

lens) is easily worked out in this manner.
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67. Heterogeneous media.

(xxv) A ray in a heterogeneous medium (/* a function of x, y t z)

satisfies the differential equations of the type

where ds represents an element of arc on the ray. There are three

such equations, only two of them, however, being independent. They
may be obtained as limiting forms of equations (1).

(xxvi) Let (# , yQ ,
z ) be the coordinates of a point P situated in

a medium, not necessarily homogeneous, whose index is denoted by ft .

Let (#, y, z) be the coordinates of a point P, situated in another

medium whose index is /*. Let there be, between P and P, n 1

other media, /AI} /x2 , .../*_i, separated by refracting surfaces (i.e. sur-

faces where there is abrupt change of the index). Let a curve, liable

to abrupt changes of direction at the refracting surfaces but otherwise

continuous, be drawn from P to P, cutting the refracting surface

(//r-i, /A,.)
in a point Qr whose coordinates are denoted by (#r , yrt zr\

and the other refracting surfaces in points specified by suitable changes
of suffix.

rp

Let I pels, taken along this curve from P to P, be denoted by
JPo

W
t
and let the path be varied in the manner contemplated in the

ordinary theory of Calculus of Variations, P being kept fixed, but P
being allowed to vary. Then

rn
2
r=l

where (/, TW, w) are the direction cosines of the tangent to the path at

P, (/,.', m,.\ n r') the cosines of the tangent to the path at Qr in the

medium /u,., and (/,._,, mr-i, r-i) the cosines of the tangent to the

path at Qr in the medium /xr_i.

(xxvii) If the original curve be, in each medium, a ray of light,

the first term in the expression for 8JF vanishes in virtue of the

differential equations satisfied by a ray.

(xxviii) If the changes of direction of the original curve at the
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refracting surfaces obey the laws of refraction for optical rays, then

the third term in the expression for BW is equal to

r=n
2 (>,._! cos <f>r

- pr cos </) (Lr8#r +Mr 8yr +Nr Sz,.),
r=l

the notation being that of Art. 1
; and, since (8#,., %/o &) is a

displacement of ft. in the surface to which (Lr ,
Mr ,

Nr) is normal,

each term of this sum is zero.

(xxix) If the original curve be the course of a ray of light from

P to P, and if both P and P be fixed, 8W= 0. For different paths
from P to P, the optical path gives a stationary (usually a minimum)
value of W. This stationary value is called "the reduced path" or

"the optical path" from P to P. It is denoted by V.

(xxx) V thus defined satisfies (151) and (152), and proposition (v)
is valid for a pencil which has traversed or is traversing a hetero-

geneous medium.
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